Software Testing

Module-1 : Basics of Software Testing

By,

Dr. Manjunath T. N.

Professor

Dept. of Information Science & Engg.
BMS Institute of Technology, Bengaluru.

Department of ISE = BMS Institute of Technology and Mgmt

» Testing is the process of executing a program
with the intent of finding errors
» Reasons for testing

» To discover problems
» To make judgment about quality or acceptability

Department of ISE | BMS Institute of Technology and Mgmt

» Testing is obviously concerned with
v'Errors
v'Faults
v Failures
v'Incidents

Department of ISE | BMS Institute of Technology and Mgmt

Errors

v'Synonym mistake
v'Mistakes while coding-bugs
v'Tend to propagate

Fault

v" Synonym defect
v' Result/representation of error

v" Modes of expression
= Dataflow diagram
= Hierarchy charts
= Narrative text
= Source code

Department of ISE | BMS Institute of Technology and Mgmt

=
[S
N B
oI
‘ “WeaLyrs-® (

Fault of commission-occurs when we enter something into a
representation that is incorrect

Fault of omission-occurs when we fail to enter correct
information.

* Failure
v’ Occurs when fault executes
v’ Applicable to only faults of omission

° |ncident
v Symptom associated with a failure
v" Alerts user to occurrence of a failure

Department of ISE | BMS Institute of Technology and Mgmt

* Test

the act of exercising software with test cases with an
objective of

v'Finding failure

\/Demonstrate correct execution

* Test case

v’ Has set of inputs and expected outputs.
v’ Has ldentity associated with program behavior

Department of ISE | BMS Institute of Technology and Mgmt

FiX

Error

Error
Fault

Error

Fault

Fault incident

Department of ISE BMS Institute of Technology and Mgmt

* Errors-faults-failures propagates in development
phases.

e Tester summarises life cycle as 3 phases
v/ Putting bugs IN
v’ Testing phase —finding bugs
v Getting bugs OUT
e Testing occupies central position & subdivided into
v’ Test planning
v’ Test case development
v Running test cases
v’ Evaluating test results.

Department of ISE | BMS Institute of Technology and Mgmt

w
=
[S
N B
oI
‘ Wearyry-® (

Determine test cases for the item to be tested.
Have identity- reason for being

Inputs ~ Preconditions

anuts

Expected Actual outputs

outputs {tconditions

Department of ISE | BMS Institute of Technology and Mgmt

e Act of testing entails
v’ Establishing necessary preconditions
v’ Providing the test case inputs
v Observing the outputs
v’ Comparing with the expected outputs
v Ensuring the existence of expected preconditions

* Records the execution history of test cases
v When & by whom it was run

v’ Pass/fail results
v Version of software

Department of ISE | BMS Institute of Technology and Mgmt

WY

i,
‘ “WeaLury-® ‘

Typical test case information

Department of ISE | BMS Institute of Technology and Mgmt

® =
o7
Wearyry-®

LR

* Two views
v Structural view - what it is
v Behavioral view - what it does — testing
= Difficulty of tester -Base document is only for developers

Department of ISE | BMS Institute of Technology and Mgmt

Program Behaviors

Specified
(expected)

Programmed
(observed)

Fault Behavior Behavior Fault
of | Of
Omission Commission

Correct portion

Department of ISE | BMS Institute of Technology and Mgmt

Program Behaviors

5

Specified
(expected)
Behavig

6

Programmed
(observed)
Behavior

Test Cases
(Verified behavior)

Department of ISE | BMS Institute of Technology and Mgmt

Cont...

e 2,5

— Specified behavior that are not tested
e 1,4

— Specified behavior that are tested
e 2,6

— Programmed behavior that are not tested

Department of ISE | BMS Institute of Technology and Mgmt

Cont...

e 1,3

— Programmed behavior that are tested
e 3,7

— Test cases corresponding to unspecified behavior
e 4,7

— Test cases corresponding to un-programmed
behaviors

Department of ISE | BMS Institute of Technology and Mgmt

* |f there are specified behaviors for which
there are no test cases, the testing is
incomplete

 |f there are test cases that correspond to
unspecified behaviors
— Either such test cases are unwarranted
— Specification is deficient

Department of ISE | BMS Institute of Technology and Mgmt

* Functional (Black box) testing
e Structural (White box) testing

Department of ISE | BMS Institute of Technology and Mgmt

Programe-a function that maps values from its input
domain to values in its output range

Content/implementation is not known

Function is understood completely in terms of its
inputs & outputs

For test case identification only specification of the
software is used

Department of ISE | BMS Institute of Technology and Mgmt

]
=
S
oI
B, ““Wenrurs-® (

* Advantages
v’ Independent of software implementation
v’ Test case development can occur in parallel

* Disadvantage
v’ Redundancy among test cases.

Department of ISE | BMS Institute of Technology and Mgmt

Specified Programmed

Functional methods are based on the specified behaviors only

Department of ISE | BMS Institute of Technology and Mgmt

* Implementation is known and used to identify test
cases

* Concept of linear graph theory is required to
understand

* Test coverage metrics —provides way to state the
extent to which the software item can be tested.

Department of ISE | BMS Institute of Technology and Mgmt

Specified Programmed

Structural methods are based on the programmed behaviors only

Department of ISE | BMS Institute of Technology and Mgmt

Redundancy and gaps — problems of functional testing

Functional test cases executed in combination with
structural test coverage methods both problems can be
recognized and solved.

Program Behaviors

Department of ISE | BMS Institute of Technology and Mgmt

* Process - how we do something
* Product - end result of a process
* Software quality assurance

v'tries to improve product by improving process

v'Concerned with reducing errors in development
phases

v'Testing concerned with discovering faults in a
product-product oriented.

Department of ISE | BMS Institute of Technology and Mgmt

* Based on Anomaly occurrence
v'One time only
v Intermittent
v'Recurring/repeatable

Department of ISE | BMS Institute of Technology and Mgmt

Mild
Moderate
Disturbing
Serious
Very serious
Extreme
Intolerable

Catastrophic

Misspelled word

Misleading or redundant information
Some transactions not processed
Lose a transaction

Incorrect transaction execution
Frequent "very serious” errors
Database corruption

System shutdown

Department of ISE | BMS Institute of Technology and Mgmt

v'Input / output faults
correct i/p not accepted
wrong format
wrong results

v'Logic faults
missing condition
missing cases
Incorrect operand/operation

v'Computational faults
incorrect algorithms

missing computations

Parenthesis error

Department of ISE | BMS Institute of Technology and Mgmt

v Interface faults
|/o timing
Incorrect i/p handling
Call to wrong procedure

v’ Data faults
Incorrect initialisation
Incorrect storage/access
Wrong flag/index value
Incorrect type

Department of ISE | BMS Institute of Technology and Mgmt

N

Department of ISE BMS Institute of Technology and Mgmt

w
=
[S
N B
oI
‘ Wearyry-® (

* Provides “language neutral” way

Program component

* Levels of constructs
Unit component

traditional object oriented
components components

! l

Procedure & functions Class & object

Department of ISE | BMS Institute of Technology and Mgmt

Table 2.1 Generalized Pseudocode

Language Element

Generalized Pseudocode

Comment

Data structure declaration
Data declaration
Assignment statement
Input

Output

Condition
Compound condition
Sequence

Simple selection
Selection

Multiple selection

Counter-controlled repetition
Protost repetition
Posttest repetition

Procedure definition (similarly
for functions and 0«0 methods)

Interunit communication

Claswobject definition
Interunit communication

Object creation
Object destruction
Program

T =ttt
Type <type name><list of field dctcw
Dim <variablos As <typo-
<variables « coxpressions
Input («variable list>)
Output (<variable list>)
“oxpressions «relational operators W
=Condition» <logical connectives «Conditions
Statements in sequential order .
If «condition> Then sthen clausexEndif
If wcondition:>
Case «variables Of
Case 1: =spredicate>
=Case clause>

Case n: <predicate>
«Case clause»
EndCase
FOr <counters = <start> To <ond>
While <condition> ... End While
Do ... untll cconditions

<procedure names{input: <liss of
variabless)

Call «procedure names> («<list d‘“‘
«<list of variabless)

<name> (<attribute lists>; <method Rests,

mag «destination object
(«<list of variables>)

Instantiate <class names «obyecs
Delete «class nameos «object names
Program <program name s

Department of ISE

BMS Institute of Technology and Mgmt

0":-2 “ .

A
&
i HGALYRY-® '

2
m
~
o~ 7 e
o7
‘ “WeaLyrs-® (

Problem statement
The triangle program accepts three integers, a, b,
and ¢, as input. These are taken to be sides of a triangle.

The output of the program is the type of triangle determined by
the three sides: Equilateral

Isosceles

Scalene

Not A Triangle.

Department of ISE | BMS Institute of Technology and Mgmt

: “Simple version” plus better
definition of inputs:

The integers a, b, and ¢ must satisfy the following conditions:
cl.1<a<200
c2.1<b <200
c3.1<c<200
cd.a<b+c
c5.b<a+c
c6.c<a+b

Department of ISE | BMS Institute of Technology and Mgmt

“Improved version” plus better
definition of outputs:

v If an input value fails any of conditions c1, c2, or c3, the program
notes this with an output message “Value of b is not in the range
of permitted values.”

If values of a, b, and c satisfy conditions c1, c2, and c3, one of

four mutually exclusive outputs is given:
If all three sides are equal, the program output is Equilateral.
If exactly one pair of sides is equal, the program output is Isosceles.
If no pair of sides is equal, the program output is Scalene.

If any of conditions c4, ¢5, and c6 is not met, the program output is Not
a Triangle.

Department of ISE | BMS Institute of Technology and Mgmt

Ifacﬂftfofal .’In’\P bemerdalGon

24
‘Prcarum rﬁrfana le 1 ‘ gorl¥an — like 1\ ersfor

A
T, L. c R A" TNTEAEE

-

o S A SN :,\'L_a ere wohich are Sfdst of O:(—rt’o.rﬁlc')
Trowr ([a,b.e)
ouvrpur (T Stde A (0 B)

© uwtHput (> Scar B e . b)
\ ouvIpuyr (N Qeoe & B0’ C)_
i meadfch — ©
Bf o=
+hern Mmoleh = mMmoleh 41
tndd T ¢

Cna’ly
T+ b= C

Then Mo = raockus —+ 3.

o 1}

Tp mMoleh =0 .

hae s P Nl eibb) <= 0 TVh e TONETESE £ ot aqrrarals)
e iR, (bt <=0 “Than cLlFue (S NOE o drtong
Else 2% (G ec) == b Then OUTpUT > Nol o a T‘r?cxhalv

9 elce 0&)—1?)\)1 CU QQQ.Ln_hQ")

: Evol 1§

Erd 3% ".Gr\ci ™S

(“pNoY YY Ton ™)
wrpur LUt T80 Qe e X))

(v ool
T el

Er\e&'l—f—

e OuEp Lt C“Eq,uj)o'luod')

uked o Yy coth ™~ o B (l_r?anald
Uded 3o Yeaeh T Solc U

e

=k £ Lt_uIch; ook -4
~N
w3y s | Moo = Moftuw 43
™ /gf
(> - - i | Mok = MAlEn - 3
3 ‘

b Yk A _,Y
’

N
bAeed?
N

: QCOJ Ere |
NOot A Vriay

CHN
o \EEaR 0o,

TucTured Tropl th_m"rul,\ o
‘< an&te proaram

L Voo miegiions or o S rocared >
= 5 o e erdoror.
S0 Cx¢
_’% —TJryiargle Prompt 15- 3
ol Stder Progrem [< cang /\
fr%pe/s
cltagn e

— oa=F 4 ’Y (_’

/// =<, & B —
e
' r. Gek c,b \ r“‘““,‘m\
TV)
.C5 o Z\

(O =
3‘(_ﬁo'— t,//> oY © a\s
'C‘G\L(_‘\t?(’ , S L’ }"!‘\"-* \

e ST T G = f 2 rohpr_(/_ﬁ:,/d S

a*\?//e Cc =

® SH* Laaye d
B TO- v N O“'Wﬂ—‘ - PERLS e
g o

SLexcpler Q‘Peufﬁ,—@@n

T er
T o b O DR ;r\féa |
< "fg-l—\'l_rromatc -Ac PRBeolean

Prcp 2 - ey Hrpwt
Putpoex (7 B 3

<t‘rt"cu’1 LGanD)

Department of ISE BMS Institute of Technology and Mgmt

{rﬂgae,r_c wOhickh oare OFcles o34 &

Oustp vt (" or@aE A ¢ . &)
Otftp\}ig (~Sccla B 7c » o)

3

L p o BT (- ocas e T . o)
T Spep o e B “rr."anale s
o) (o< bae) -ArNND (b< a+e) “AND (cath)
DR o ':EQ-vA'Tr.’anale = “rwe
ELce ¥e —A'_rru"onﬁ,le — F aolre
EnAT-¢
Q"'Q-P S, DDefer po: ne ’l_r-*’o.n(a' c ’l_a,pc
-5 TS ._%Tr—fana\e
: Therm J+ o= 8 “AND f&a—a)

Then Okt (‘T Eqg wui oXsr ot)
El &e Tt (a=£B) A~ (oFc) Ao E=Ec)
X hen oL Hp ot C“ <Cc alsne 3

Clse OuLAp LT U™ Taoccetaz™)
ErxaTs
End e
- plee O VAP C‘: N o (_\’Th“a,v\alc")

En &2 3-F

G “ e 8 {2

Department of ISE = BMS Institute of Technology and Mgmt

ra G o o o s
o R i 2 - '—+ —

{n—~pr oved Qpecefg cowon'’

ol = e ST sl :l?r\l.x—ae,r

AT S . gﬁ’r‘r:anata Ae¢ Boolean

fepa @ Gt TrpUT

ouIpt [“vildac 3 ?nﬁﬂbrs ook ch e SNl oi- O-Ptrco.ndd *)
Srpur o b oCD

Ok e (o = ooy D (o<= o)
Po. Ay —-63 e (b goo)
5 =) AND (C<=900)

j:-F No T L = B)
Then Oulput (Svotsie af; o ¥ ot
peronstted v o laeeg®)

TN Thse ranﬁc; of

Enad I
T3 prov Lo
Thenr O LA PUT (" NoLre ©Of . te ot the runac ot
Permdtlcsd v o)
End 1-¢
Ty NoOY fc2)
x o ook W e YOowrge COf
hen ouvrpur [T volns R ST 1
Per attraoct Vol er’)
End T4
Dinet It G 1 &
AND Cg9 -AND Cs e Tl By 3 ookt ewn

O(,&—P\}_f C A o
DL’J“PL,\J:'))) (u Pira U ~
Output (“orde e re7, @)

~

\
SHep o - 99 A . "a.nale 3
(b < (a€tc)) ARTDE G Catr))

-4 (. o =C B FEEREAND
“Then Qi’;ﬂ*rr-‘ar\ate = T rue
Elee T —P’Tr\’ov\a\c = Forse
Ehd‘j__r_
1
Qs De,tirn'\?ne Krrrﬂr\atc‘(’]_ld?c

b8 o 238 e A‘rr."(\r\ate
Then .5 G aa=b) AND (b:(‘)
duetpul [CpURosEncR =

Y hen
cwe. B ¢ (atb) AND (o) D (bFD
3N hen O\AQS\»J [SCGJe,hC_")
clae Output (~0fo0 ¢ e
Ena 34X
Erarg

e rD"rPM & TEOE O ‘-\“ri’ana | er)
Con-P\c)fiﬂ °n Tha *l—r:’m«ag\c, Problos)

EarT S
fe S VO Yo laki ors %\IPS‘ AR)
fr‘@)u:f < E} Covrect oullpus ‘

Al

: Ead *t‘r?c'u*uj/[e =

® =
o7
“WeaLyrs-®

w

NextDate is a function of three variables:
month
Date
Year

returns the date of the day after the input date

The month, date, and year variables have integer values subject to these
conditions:

cl. 1 <month <12
c2.1<day<31
c3. 1812 <year <2012

Department of ISE | BMS Institute of Technology and Mgmt

If any of conditions outputs variable has an
cl, c2, or c3 fails out-of-range value

If i/p value is invalid outputs invalid input date

Two source of complexity
Complexity of input domain

Rule that determines when a year is a leap year

Leap year problem is solved by Gregorian calendar

o

Department of ISE | BMS Institute of Technology and Mgmt

iy

L e e

___[n\P[UY_\Lr“Mv. -

’Pro%r&gn Nod Dele 1 *Siwmple \Versfon

—

T

Dtm

-

lorrxot‘erD&ld , QAo morroooMonth . Towm orrowvVYear AQ ir\tlacr
dmﬁ . orXh . VYear -AC jr\'l'(ﬂzr

OuXpur (" Corer '[’DcLoud‘_S‘do:CQ i Ttke e rees MM DD Y YIYY ".)
grp\}j: (woray ,clo.t.d, 8(_(1()

Cose

Cose 1

D eorIn g XS f .85 .1 % By, dE: _SE 3 T orura ((estcept Dec

j«—f— Qlcyv.é.:ﬂ

Tpefny O err*rOvLo'DQuU = cir.\v =

tlee
4OM Or M ‘Do‘a:\
Ton-orroroMonrndh = O rTh 1\
EQse
Corew: roeTh ¢ H.6-9. OrF ks E SBNE O ki

°ES d0ﬁ<30
Then ’Dbnr\orrovoboﬁ = dwﬂ o

glee
1omrof ro»o‘Do.sd =4

Yo EOr froO MOrdh = ordh +1

Erasg

Elce

TO rorroo DQ)-"d =
‘4tOmrorropMordh — 1

E de,ar - o2
Then o \p C “Yoovle 1S Ow")
Ftze teomo©@7yvyoR - A Gy = Pear 1\

CnorT g

Else
: ¥AE 3 chud = 28 3
“Then

5.5 CLz_d,e_er coh e [QO{J Uc,(xr)
“Then &GW\OTFOVODOJ.d - b g | eop gear
cte ot a teop geor
JTonworroro QLQ;JH:;] r
OO Ty OO W ONXh = 3
L:ﬁQLI_f
Lee a-p C‘-mAd: 29
S ar | S TOROTTOYO d‘o’ﬂ =
OO VO TYOW rOrdh = 3

u 5
@\\-L‘\L_\:l C Cﬁhr\ot huvc el -u) PR)

33

) A TR |

Ecd b

VR ¢
b -
EV\DL\k

5 oot |, ~T O moFRsosis et
© vipur (" v Onorrowo e cloxa o

o ToroOr re

>

{ Ko OYrow qdear D
D ANJoxx DX . :
. S — o o o
£ ver? TOru
Program. sENRTRIE 3 yrpoovsd, NSCAOT

. N <
,’ Drres "t()rr\orr’omfbo-v , IomoOrreo® Mordh | Tomorow Yeor -As ,lr\.LI?,c{

P ., YeOordw . Yeod “AS ir\ﬁﬂ¢r
i D e ca. Ca_ PP Boocle o

~

‘ # v
o OUIPLAS C* Ervxes Q:oo&oqax e Tes The fBEn Mp DD yyYY D
O rpoud (vorxh Aoy - o e
&t e otmﬂ) —AIND C(\Lc\xl <=3
o - (1 == ordhD AND ([mOorEh L =1
C = (. < - kduwﬁ Artes O¥éar <= JoND
s
¢ wov (oD
Then outpur ([vl oot i rur\3(>

Ere\ Tty

: =1 rov (€D ’
1 (F Then O\JL—Q\LLT C“ v oo ot Oh r(\.r\?&)
Crol g ¢

Department of ISE = BMS Institute of Technology and Mgmt

oY (2s)
cotpur G
3

C1 AND C2 AND Ca

o Ve U ST 195) UQ_O\S\ rot T Y‘cmhoae>

e &L\T arording i ex et Ix)

: O rxh I8 S o e R R 0 F e)

- O,L0~v+l

50 g0 TrovD Shorg = : ;
S ON-OF & OO arOvIR = T e

el f ' | | :

& : g b I

S sorday I8 By 6. 8, OF u BOC’J"*G' T
ocC

—then oo ry o oDy

E\e
LS d.csud: 30
Fhen = %o ETERn oYy =\
ogO T o O ordh < ORI)

eac oty Gl - Thvolsd Tput Doxe)
Ercl i
Cirotif

Coxgs : Oortlh 78 o2 - T Decenmboer

y 35k o <31
~hen "G()q;\orr'owmould = Mka =i
cCle
-JLon—\Or'rO\D(Do»kd =
O O F IO fondh =)

SIS \a\wr:&ow—
wp o 5 5 ’.DCCLL)
e TR el

3
clre SEn ot o - 9GSt amr—r
Er\ole
| R o I e o e = e — e s
; ChC U sordh ¢ O Fce R g

i = ¥ oLoud < 28
=]
L ton oo Dooy = SIgE

cee =
T4 c»nuu‘ = 28
—+thev
e L\a/mr co Cleop \duau)
—thraen TowOrvoroboy = 29 tlenp i pens
e rze ~ EUOEkE L € LLQ_}’ ge,cur
! \)ton\orrfopoLcuv 1
:
L O O It O N OoOrO~= e t—t3 3
i %
ereet "
olony - 29
< —{ e YB L‘dt_gr F e ot lm‘P He,or)
| RS S TN 'CQW\Or«ro»ODﬁ 2)
\ —5 O A0 ((OvO —~0O = =%

Department of ISE BMS Institute of Technology and Mgmt

eld

;4 Ckﬁld 79 ' "

Jhon Oulput (Troaid trpu olate) "“~1c
Erall} 1106
Cr-ci f
QM!%' *o'
oL i
F 3 ol Qe = \‘f“, {,tDrrOTfOUDN‘w\Eh ’

[Tomorrow’ s clott
J-0nmo r'rowqc.or)

pupM
Aom OF '°U°D°"a)

tnd N caDol

Department of ISE = BMS Institute of Technology and Mgmt

[]
o7
‘ Wearyry-® #

A rifle salesperson in the former Arizona Territory sold rifle locks, stocks,
and barrels made by a gunsmith in Missouri.

v’ Locks cost $45
v’ stocks cost $30
v’ barrels cost $25.

The salesperson had to sell at least one complete rifle per month, and

70 locks
80 stocks
90 barrels.

Department of ISE | BMS Institute of Technology and Mgmt

[]
o7
) Wearyry-® #

salesperson’s commission is computed as follows:
v" 10% on sales up to (and including) $1000

v" 15% on the next $800

v' 20% on any sales in excess of $1800.

The commission program produced a monthly sales report that gave the total
number of locks, stocks, and barrels sold, the salesperson’s total dollar sales,
and, finally, the commission.

Department of ISE | BMS Institute of Technology and Mgmt

* This problem separates into three distinct
pleces

v'Input data portion-deals with input data
validation

v'Sales calculation

v"Commission calculation portion

Department of ISE | BMS Institute of Technology and Mgmt

DL cuaton
Cp o amm bl

EW

Y Solder Cold <y loXxron
“‘?’ Comn-<s2ttor C alenlac®yon ’PO"‘CLUOK.

S R

_I mplemerdoGon

@ oparittforn (Tropovb.@UOTPOYE)

’Pmarom

Dim (veer , QOlowre |

‘r 1 DE LeCk‘P\Su‘Qe, Crowuc Prz "ol o

o el M2 ,’Zr\fLﬂLr
lLbbarrel Pprice

T “Lolon S o
| 3 :\n o{li\c\&.b& e oot Cotrs lbaxcel Sobisr N Pect
‘ ol 8 . L 5
| F AL BEAL
\ > m AN L, CornaSAion
k -~
|

LUocwe price = kS-0
S prvfce 5 390
b orrey poice = 25-0 B 3o -~
Toled \otk = 1+ olet O Tolt = orol vrel
-
Trpur ((loweD ;
CCe el
wolkil €8 pvov- (b ot o= —V) fSrRpux Aave :
el ©f toTe

Dngox (Clotrs, barras p)

o) loter = toles totr + lout);q
Tolor Slowes = lolod SFoter -+ o
“Jotor Barrdi= Tolew Rovy et + bavcrels

Trpur (tous)

\‘\ = v O Rile

“Problem Qepordias (nIo Shree otufancat preees :
Y TEEPLY ASEa PerSIon — ol orth Trpul cleka VastdolRoi

As Pcot

vepartment or 1oc DIVIS IThSUutute or |ecnn0|c')gy ana vigmt

tolo) Clousy , ' oled RBavrelr 6F 'r_;r\ﬁ.togf

—\

1o e cale

g { Y Waases \soils T . Jmics focxs)

purpur (M 6 e Sold : ” . tolouSlows)
DuTput C ™ Borrets Lold:-" , Lol Barrelr) 13

L0 Carl 3O oM
U St = loc e price =% 4 Tow oc=A
o S oris's Do pPrice Tolot QA—Oqa;grrw
Freld St = bbarrelprice X folet B by
| l ccrSor A= Q-+ o0 et —+ basrel e

°

¢ wegolot Solsr T Lo et)

Then Cormnm3I 8" OoNn = O-lo0 % loov-0 o s
Tg8 " = SORTON -+ O-I15 Nl .
Co T gRFon C o X ¥ *
an:\“wv:\i%-'on = Comnuygkion 1 O o X (Soler 1s O)
tlse F 9Bp CQcLle)s - ED O .0)
l"\m
CommiS®ion = O-10 —* JlovO. O =
v, foiiD = COvRET 35 O S O 57N (Sotst — JOD
E\lse <cormn-Fgsion = O] 0 > Salst
S S R
bs S =

ot (™ copaistion e S Cormmnpiggion)

ncl COmand XTOoD .

Department of ISE = BMS Institute of Technology and Mgmt

The SATM(Simplified Automated Teller Machine) system
communicates with bank customers via the 15 screens.

Customers can select any of three transaction types
v’ Deposits
v'Withdrawals
v'Balance enquires

Transactions can be done on two types of account
v'Checking

v'savings

Department of ISE | BMS Institute of Technology and Mgmt

=
® S
oI
‘ Wearyry-® (

-

WELCOME

to the

Simple
Auntomatic Teller
Machine

Flease Insert vour
card for service

~N

/

Cash Dispensing Door

Deposit Envelope Door

Receipts |

ID Card |

Department of ISE

BMS Institute of Technology and Mgmt

Eoraan &
SBore=n T
Entar your Personsl
Wleelcomas idertficatian MHMumb<wr
Pl=a=a Irnsard aeltly . L
A ThE card for service Frass ancel iF Erroe

Sare=n 5
Selacd transacibon e
b kEnc e
deposit

Siereert £

Invaled deniificatorn.
s carcs will B
retainsd. Flaoses call
= bEnk.

SoraEn ¢
Ermtar amoursl
Wiithdraewals miusl be
i increments of E210
F'r-&sf_. E-ETHEE;I_if_ErrI:Ir

SGoreser 163

Nemporarby urnakie o oar balance is Deeing
procass withdrawalis. updat=d. Plaase take
Snothcr bransaction™ czsb b ddispanssr.
=
=/

weiihdraw sl
Press ancal il Ervar

v

Soreasn &
mnauHicient funds.
Fla=m=g anbier & newse
armesuank.

I
Press Carosl 1 -Err'::-r]

Sorean 11

e

Jm

Soregserm 1= Soraer 14

Fieaasa pul anweelosoe | iour naw baolanss 3

b=t =lat. Your printed on your resceipst.

Ealares will e updatad Szkhes fran=action™
e

Fress cancel if Ervdar. rnc

220,

Screan 3

iour Farscral
ldeniificaton Mumibes
i= incarmrest. Plesss
Ery agair:.

Scrasm &
Serbect account Typs:

ez ki
=E8WINngs

FPress Caressl i Error

Soresn 3
FAmchirr: S nncd
CGisoanaa that suresunt,
Plessses by Aacgain.

Soraasm 12

Tamporarily cinakbés 1o
prie=ga dap=osids.
Ar-afhasr tTransaecton™?
=S
e

Socrear 15

Frrase Taks woldr
recaipt and AT
carnd. Thank wouw,

"

The Currency Converter

Event driven program

Code associated with a graphical user
interface(GUI)

Works on the basis of completing label

Users can click on
Compute button
Clear button
Quit button

Department of ISE | BMS Institute of Technology and Mgmt

The Currency Converter

[Currency Converter

U. S. Dollar amount | |

Equivalent in ... I I

O Brazil [Compute |

O Canada .
. [Clear

O European Community

O N

Japan

[Ot

vy

Department of ISE | BMS Institute of Technology and Mgmt

N B
S5 —
WeaLyrs-°

LR

Controlled by lever with a dial

Leaver positions
v OFF
v INT(intermittent)
v LOW
v'HIGH

Dial positions (1,2,3) indicates three intermittent speeds & is
relevant only when lever is in INT position.

Department of ISE | BMS Institute of Technology and Mgmt

Lever OFF INT INT INT LOW HIGH
Dial n/a 1 2 3 n/a n/a
Wiper g 4 6 12 30 60

Department of ISE

BMS Institute of Technology and Mgmt

L
o7
) Wearyry-® #

Department of ISE = BMS Institute of Technology and Mgmt

3/9/2020

My Details

Dr. Manjunath T. N.
Professor

Dept.of ISE

BMSIT, Bengaluru

Email: manju.tn@bmsit.in
manju.tn@gmail.com
Mobile:+91-9900130748

Department of ISE | BMS Institute of Technology and Mgmt

Software Testing

Module-2 : BVA,ECP & DTM

By,

Dr. Manjunath T. N.

Professor

Dept. of Information Science & Engg.
BMS Institute of Technology, Bengaluru.

Department of ISE BMS Institute of Technology and Mgmt

Functional Testing

Ultimately, any program can be viewed as a mapping from its
Input Domain to its Output Range:

Output = F (Input)

Domain

Range

Functional testing uses information about functional mappings
to identify test cases:

Department of ISE = BMS Institute of Technology and Mgmt

Boundary value Analysis

Input Domain of F(X 1, X5)

A F —function of two variables X1 & X2
When function is implemented as a
program both X1 & X2 have some
boundaries

a<x1<b

c<x2<d
[a,b] and [c,d] -range of x1 & x2

Department of ISE = BMS Institute of Technology and Mgmt

Boundary value Analysis

|t is a software testing technique in which tests are
designed to include representative of boundary values

« Used to Identify errors at boundaries rather than
finding those exits In center of input domain

« Range checking—focuses on the boundary of the
Input space to identify test cases

Department of ISE = BMS Institute of Technology and Mgmt

Boundary value Analysis

* In general application of Boundary WValue
Analysis can be done in a uniform manner

« The Dbasic form of implementation iIs to
maintain all but one of the variables at their
nominal(normal or average) values and
allowing the remaining variable to take on its
extreme values

Department of ISE = BMS Institute of Technology and Mgmt

Boundary value analysis (cont..)&

The basic idea is to use input variable values at their

The values used to test the extremities are

Min Minimal
Min+ Just above Minimal

Nom Average/Nominal/normal
Max- Just below Maximum

Max Maximum

Input Boundary value testing

a b

& ®—> X

P T N
x(min) x(min+) x(nom) x(max -) x(max)

Experience shows that errors occur more
frequently for extreme values of a variable.

Department of ISE = BMS Institute of Technology and Mgmt

Input Boundary value testing

Test Cases (function

):2 of two variables)
: :
| |
"} Iy e e i e e
: & :
| |
| |
| |
| |
?o ® 0?
: :
I N — L
| |
! :
3 b >)(1

ol
AT A™

Department of ISE BMS Institute of Technology and Mgmt

Input Boundary value testing

g 1
CC E ™ ©

X2 EE 2 EE

I- >-|-c>-: - :-O-f

— ————— B o o ——— —— -1——)(2"18)(

| I
' B * g8, X2 nom
l I
| v | X2 min+

o — ———————— —] — — 32 min
I l

Department of ISE BMS Institute of Technology and Mgmt

Boundary value testing

Based on critical assumptions known as single fault
assumption in reliability theory

 faillures are only rarely the result of the simultaneous
occurrence of two (or more) faults.

« Thus boundary value analysis test cases are obtained
by holding the values of all but one variable at their
nominal values & letting that variable assume its
extreme values.

Department of ISE = BMS Institute of Technology and Mgmt

Generalizing Boundary value Analysis

* The basic boundary value analysis technique
can be generalized in two ways:

v"Number of variables
v'Kinds of ranges
» Generalizing number of variables Is easy

« Generalizing ranges depends on the nature of the
variables themselves.

Boundary value analysis yields 4n+1 unique test cases

Department of ISE = BMS Institute of Technology and Mgmt

Limitations of boundary value %5
analysis

 Works when the program to be tested Is a
function of several independent variable that
represent bounded physical guantities.

* Boundary value analysis test cases are
rudimentary

 Physical quantity criterion

Department of ISE = BMS Institute of Technology and Mgmt

Robustness testing

 Extension of boundary value analysis
« Shows what happens when extreme are
exceeded with

v"Value slightly greater than the maximum(max+)
v"Value slightly less than the minimum(min-)

a b
& ®—> X

Department of ISE = BMS Institute of Technology and Mgmt

Robustness testing

~
L]
o7
‘ Wearyry-® #

Department of ISE = BMS Institute of Technology and Mgmt

Robustness testing

Forces attention on exception handling

Department of ISE = BMS Institute of Technology and Mgmt

Worst case testing

» Depends on single fault assumption of
reliability theory

What happens when more than one variable has
an extreme value -WORST CASE ANALYSIS

Department of ISE = BMS Institute of Technology and Mgmt

Generation of worst-case
test cases

o Start with 5 element set
{min,min+,nom,max-,max}
» Take Cartesian product of sets

Department of ISE = BMS Institute of Technology and Mgmt

* se e
— - - — — e —
see

see
s 08
L X X

Department of ISE

BMS Institute of Technology and Mgmt

Relationship b/w boundary value & %¢s
worst-case analysis

* boundary value analysis test cases are proper
subset of worst-case test cases

« Effort I1s more— worst case testing for a
function of n variables generates 5™ test cases
as opposed to 4n+1 test cases for boundary

value analysis.

Department of ISE = BMS Institute of Technology and Mgmt

Robustness worst case testing

* |Involves the Cartesian product of seven
elements sets results in 7™ test cases

X2
| |
Y X - L N
d a:-— —————— —-— - - - - — — — .:.
.I. - - |-
| |
| |
abe . -*-
|
| |
| |
ane - she
C o B — — — — — — - — — — — — — — - e
ape - LA N
| |

Department of ISE = BMS Institute of Technology and Mgmt

Special value testing

Adhoc testing

Most widely practiced form of function testing
Most intuitive and least uniform

Occurs when a tester uses

domain knowledge

Experience with similar programs

Information about ‘’soft spots” to device test cases
Best engineering technique is used than guidelines
Depends on ability of the tester

Department of ISE = BMS Institute of Technology and Mgmt

P roblem Sound d(d

s_)'*'-

o

\

(V8
o0 |00
laq
a0 O
jo©
oo
100
19 100
=200 (e O
o © fon
joo oo
IoC (o0
100 [e©
fov jo 0

EXAMPLES

C'\.Lh.lolilﬁp
’JSOCC el A
Not o a®

70 o0 e s
TsolCcds
Equs(&laral

| goCc el
Not a a'c

Vel Apagsre Tl T
Gq_pean-i c\?j N
=€ OA O\
J sosCerns OO, 100 — 2 Ol arc cauont
TeoSe elar 9
E puileaXorat all ordas equed
JoOSCelA jot, 100 — o Crdar Ore ¢ q ot
NS o A€ 100 4100 = 200
TJ ool COsN
TS0l e A
all Odclat Q.f}ud

OO0 4\ DD < 0O

{ 00 4100 < 200

padg
‘ “WeaLury-® (

EXAMPLES

Frteigle FOLLM, Aoerch - (O TEL QS
L>_ f}&.og A yoorsd ol fTdt o2 10 zu:;)
o} Ja input Space Cube. (_’in .9Prcu~d Lhe

Y pre torner”

“Ariant® A I SR a0 G0 TR0
st o b C Ex P(t&d olp
! BB e utlesees | e
o) |) b} NoY a AlS 12<2
= ! \ 100 Noy a A€ 141 <)00
1 | I f1aa | Ney a A€
1 s l 1 laoo | Noevaal
l -
| 13 ! 3 | Noy aa't
'l i l o ok TOoocu
& | 9 100 Nov aa's | 42 <)00
9 ! S |19 | Noy a &'
10 } K 200 | NOYan'e
" 1 | jo0 ' NoOY o Al
05 | 100 | & Ny O pale

EXAMPLES

! No Dal Fanttion

Aof T chtD(xﬁ bw\(lmn'

wortt Codt tut fose oot

.r-* (epfonind {he oy apate Cubt (B {$

Onud one Corn et 0 |

| | o ‘ 0 | E’-P“(m hutpo!
Oose | moreh| DV YR |
\ \ | |igie | Jon, 2 181 |
A\ \ 1813 | Jon,a o189 '
(I o (A | Jen, 8, 10
i ! @ |'14¢12 | Jund, 1812 ‘
A 31 Nt [4ol 16 |

OV |

pepartmentorISE ! BVIS THSHtUTE 6T TEEANSIogY ana mgmt

EXAMPLE

*or" <t he Commnfesion Prob!cm
< Q’«—r\ s o
2 o 3 T S i3 < O
vr\\ﬁ V)QQ \}-\(53 \/“ég“_‘% =
+ - 2 + —
1900 1IS00 —}180 ©
Bo‘(d"‘ = 33 X
oy) e e | O X Pl
\, 5 L 8
L mo,jr’r\»\m
&) relblays conTipaax Bounih@rﬁ Vaoalne «——Aﬁo)&a)ﬂ' 2y exN T
T S S et s ‘ 3 S xe e BONATIOE Logige
oo L Y ocxs P arcels S allen Cormi2kion C ormrmerd
; \ 1 oo 1o | ourPur mrw emam
\ 1 xR x5 TR At }‘ TO U PO I PN
! oD 1 { 13 © [Y2 T o\):t—P\»T I~ ~Ehream
‘ 1 i Tuys i Xy -5 2 I CuFrpPLY A o
s s | soo | =0 = | tata potrx
1o AR L2 SR z‘ o ey POtake
! i ! | = =
i ! = ACY oY X
R | 10 e a0 [t S50 ! . g 48
==y 3 oo o | ass | a9s-s— 1 Berda=: P
1o - [P | oo el WRGRE
{ ! : Ae € 0:'\1‘—‘_
e an A | ioas | 103.95 2} BOFS e
¢ i | o +
LR 1o ' joso : loy. s - | Cocor po
t : i =
fhi-do , 1 © I toys bool 062 TS ! Bordss poict
1y f' 1y iIyoo | 1 G 3 = f?“??’&l» ?’di’rx‘”
§
1L ! R | b Y et R4 6.2 - Pow oLy POT-J -
b % i3 7 7o 215 -5 S-SR POTat —
) & | 1e EY %5 Phmeves. 13T Woresy Roiek —
! g D RNRXR O ! Roy cr PO.'r\T
et s ©coiY

s 1S

Random testing

Rather than always choose the min, min+,
nom,max+, max values of a bounded variables
use a random number generator to pick test case
values.

Department of ISE = BMS Institute of Technology and Mgmt

How many Random test cases aré:£.
sufficient ?

o Structural test average metrics gives answer
 X=Int((b-a+1)* Rnd +a)
v'fun Int--returns the integer part of a floating
point number
v'fun Rnd- generates random numbers in the
Interval[0,1]

* Program keeps generating random test cases
until at least one of each output occur.

Department of ISE = BMS Institute of Technology and Mgmt

Random test cases for Triangle
problem

Random Test Cases for the Triangie Program

ey Nontrianghes Sc.tlcncL Isosceles Equilateral
(A 593 52 1
7% T3 % I
8556 3164 7 !
1254 1252 22 !
397 a2 155 !
2998 2850 129 1
4447 4353 207 1
$953% 47T BT 22TN 0.01°%

Department of ISE = BMS Institute of Technology and Mgmt

Equivalence Class Testing

Define relation R as follows:

for x, y in domain, xRy iff F(x) = F(y).

Equivalence

Domain Range relation
Test cases are formed by selecting one
value from each equivalence class.
- reduces redundancy
- identifying the classes may be hard
Domain
Range

Department of ISE = BMS Institute of Technology and Mgmt

Equivalence Class Testing

* Function F of two variable X1 & X2 ,when
Implemented as a program, the i/p variables
X1 & X2 will have the following boundaries
and Intervals within the boundaries

a<x1<d, with intervals [a,b),[b,c),[c,d]
e<x2<g, with intervals [e,f),[f,g]

« Main purpose of Equivalence Class are:

 To have a sense of complete testing
 To avoid redundancy

Department of ISE = BMS Institute of Technology and Mgmt

S &, ¢
w» S =
=
™

o i

B
R &
S

A -

3

el
: WY
% e
o e

Weak Normal Equivalence Class Testing=="

k)

v Accomplished by using
one variable from each
equivalence class In a
test cases

v' These three test cases
use one value from
each equivalence class

Department of ISE = BMS Institute of Technology and Mgmt

Strong Normal Equivalence Class
Testing

v

= Based on multiple fault
assumption

= We need test cases from
each element of the
Cartesian product of the
equivalence class

Department of ISE = BMS Institute of Technology and Mgmt

Strong Normal Equivalence Class S
Testing

* The Cartesian product guarantees that we have
a notation of completeness In 2 sense:

v"We cover all the equivalence classes

v"We have one of each possible combination
of Inputs.

Department of ISE = BMS Institute of Technology and Mgmt

Weak Robust Equivalence Class
Testing

* Robust part — Comes from
consideration of invalid

values
 Weak part — refers to the

single fault assumption

Department of ISE = BMS Institute of Technology and Mgmt

Weak Robust Equivalence Class
Testing

Two problems occur

« Specification does not define what expected
output for an iInvalid input should be. Thus
testers spend a lot of time defining expected
outputs for these cases.

« Strongly typed languages eliminate the need
for the consideration of invalid inputs.

Department of ISE = BMS Institute of Technology and Mgmt

Strong Robust Equivalence Class
Testing

o | ol 4 The robust part -- comes
from consideration
' Of invalid values
— Strong part -- refers to the

' multiple fault assumption

entor 1Ise -« bivid> Insutute of Technology and Mgmt

Weak Equivalence class Testing

Test Case a b C
WEI1 al b1 cl
WE2 al b2 c2
WE3 a3 b3 c3
WE4 al b4 c2

Department of ISE

BMS Institute of Technology and Mgmt

Strong Equivalence class Testingl:£

° i A ®
o5y
“Wearyry-®

Test Case a b c
SEl al bl cl
SE2 al bl c2
SE3 al b2 cl
SE4 al b2 c2
SES al b3 cl
SE6 al b3 c2

Department of ISE BI.

Lo
SE7 al cl
SE8 al cl
SE9 a2 bl cl
SE10 a2 bl c2
SE11 a2 b2 c2
SE12 a2 b2 c2
SE13 a2 b3 cl
SE14 a2 b3 c2
SE15 a2 b4 cl
SE16 a2 c2
SE17 a3 bl cl

Equivalence Class Test Cases for
triangle problem

[n the problem statement, we note that there are four possible outputs: Not a Triangle, Scalene,

[sosceles, and Equilateral. We can use these to identify oufput (range) equivalence classes as

follows.

Rl ={<a,b,c>:
R2 = {<a, b, ¢c>:
R3={<ab,c>:

R4 = {<a, b, >

the triang
the triang
the triang

e wil
e wit
¢ Wit

\ sides a, b, and ¢ is equilateral)
1 sides a, b, and ¢ 1s 1sosceles)

1 sides a, b, and ¢ is scalene)

: sides a, b, and ¢ do not form a triangle)

Department of ISE = BMS Institute of Technology and Mgmt

These classes yield a simple set of test cases:

Test Case a b c Expected Output
OEl 5 5 5 Equilateral

OE2 2 2 3 Isosceles

OE3 3 4 5 Scalene

OE4 4 1 2 Not a Triangle

Department of ISE

BMS Institute of Technology and Mgmt

D1l = {=<<a, .
1D — {<n, D,
D3 = {=a, b.
NDaga — {<a, b.
DS — {<==a. b,
D6 = {<a, b, c>
D7 = {<a, b, c>
D8 = [{<a. b, c>
Alternately

> t a— b =—=c}

c>> - a=b. a 3= Cc}

= T og e eI}

c>> - b= c, a 3= b}

c> - a» b, as=c, b=}

a=>b + c}
b>=a+ c)
c=a+ b}

N] [L

D6' = {<a,b,c>:a=b0b +c}
D6" = {<a,b,c>:a>Db + C}

Department of ISE = BMS Institute of Technology and Mgmt

Equivalence Class Test Cases for NextDate functiqf:

s AN

equivalence class testing. NextDate 1s a function of three variables. month. day. and year. and these
have ranges defined as follows:

1 < month < 12
1 < day < 31
1812 < year < 2012

Traditional Test Cases
The valid equivalence classes are

M1 = { month : 1 < month € 12 }
Dl ={ day:1<day<3l}
Y1 = (year: 1812 < year < 2012 }

The nvalid equivalence classes are

M2 = { month : month < 1 }
M3 = { month : month > 12 }
D2 ={day:day<1)

D3 = { day : day > 31 }

Y2 = { year : year < 1812 }
Y3 = [year: year > 2012 }

These classes yield the following test cases. where the valid inputs are mechanically selected from
the approximate middle of the valid range:

Case ID Month Dayv Year Expected
Output
TEl 6 15 1912 6/16/1912
TE2 -1 15 1912 invalid input
TE3 13 15 1912 invalid input
TE4 6 -1 1912 invalid input
TES 6 32 1912 invalid input
TEG6 6 15 1811 invalid input
TE7 6 15 2013 invalid input

Department of ISE

BMS Institute of Technology and Mgmt

Decision tables

 Used to represent and analyse complex
logical relationships

 |deal for describing situations in which a
number of combinations of actions are
taken under varying sets of conditions

Department of ISE = BMS Institute of Technology and Mgmt

Decision Table Testing (Cont....J&&

* A decision table has following four portions
v'Stub portion — left most column

v Entry portion— right Condition stub
v'Condition portion— C’s 4ondition entries
v'Action portion—a’s Action stub

Action entries

Department of ISE = BMS Institute of Technology and Mgmt

Decision Table Testing (Cont.... J&

ons of 2 Decision Table

Department of ISE = BMS Institute of Technology and Mgmt

Decision Table Testing (Cont....

* Don’t care entry has 2 major interpretation
v'The condition is irrelevant

v'The condition doesn’t apply

Department of ISE = BMS Institute of Technology and Mgmt

Decision Table Testing (Cont.... &

e LIMITED ENTRY DISION TABLES
Decision table in which all the conditions are

binary

« EXTENDED ENTRY DECISION TABLE
If conditions are allowed to have several
values

Department of ISE = BMS Institute of Technology and Mgmt

= =
G B B H

el m
= 7 (3

Decision Table Testing Techniqugs?

S e B, To

* To I1dentify test cases with decision tables
Interpret
v'Conditions as inputs(refers equivalence classes
of inputs)
v'Actions as outputs(refers functional processing
portions of the item tested)

v'Rules as Test cases

Department of ISE = BMS Institute of Technology and Mgmt

¢l:a b, clom atriangle!

2 a=bl

B anc

4 bect

a1: Not a Triangie

al: Scalene : x
ak: lsoscees
o Equilaterdd
55 Impossible

Department of ISE = BMS Institute of Technology and Mgmt

Refined Decision Table for triangle
problem

Refined Decision Table for the Triangle Problem

Decision Table with mutually
Exclusive Conditions

Table 7.4 Decision Table with Mutually Exclusive Conditions

f

Conditrons R R R

¢l month in M1/ |

¢Z: month in M2t - | ¥
3 month in M3 . - !
al

al

as

#

Department of ISE = BMS Institute of Technology and Mgmt

RULE COUNTS

* When don’t care entries really indicate that the
conditions are irrelevant, rule counts are
developed as follows:

v'Rule in which no don’t care entries occur, count
as one rule

v'Each don’t care entry in a rule doubles rule
count

Department of ISE = BMS Institute of Technology and Mgmt

Decision Table with rule count&:,

Rule coum™ X x <
1 Not a Trang'e .
al:?t
a2: Scalens
al tsm("l‘:‘
- Equitaterdt
‘q_ ‘mw_\\\\\k
———

Department of ISE = BMS Institute of Technology and Mgmt

Rule counts for a decision table with {:#]
mutually Exclusive conditions

sble with Mutually

Department of ISE = BMS Institute of Technology and Mgmt

EXPANDED VERSION

Expanded Version of Table 7.6
| q 12 1314021 22 23 24 3 2 3 M

M1 PRl o i ' | e
vl TR AR SEEN I N | | Y. 3
M) R e Pk R P | | I)

| | ! | ! ! | |] ! ! |

Department of ISE = BMS Institute of Technology and Mgmt

.7 12 1.3 1.4 2.3 24 34
M | T T ¥ i ¥ ¥ F
e 1 L | ¥ F 1 ¥ ¥ I
M) ' ¥ 1 F T ¥ I ¥
1) | 1 ' ! 1 1
X X X X X
e

table 7.9 A Redundant Decision Table

/—

Conditions -4 S = 7 4 9
< T] F ¥ F 1
cl - T T F ' ¥
c3 - ¥ F 14 F ¥
21 x X X - X
a2 — X x x —
al X ~ X X X X

| —

Action entries in 9 ----- identical to 1-4

@ Ve~

An inconsistent Decision Table

Table 7,10 An Inconsistent Decision Table

Conditions

¢l

3

al
al

al

D4

> > =4 =q ™M

5

= SgRE—F]
@ o W
. \

S
TS e
Gy -

‘ GALURY” '

of 73
:?6 A '1’7’
—0>
= = = = A i B H
i 8 A\ A
o i @
“WeaLyrs-®
=& Bew ¥, To

Observations

v'Rule 1-4 and 9 are inconsistent— Action
sets are different

v'Decision table is non deterministic-no
way to decide which rule to apply

Testers should take care when don’t care entries are used
In decision table.

Department of ISE = BMS Institute of Technology and Mgmt

Decision Table for triangle proble

Refined Decision Table for the Triangle Problem

I I I I | T 1 I §—y
F T I I I | 1 I I I
- I 1 I 1 | T T I I
- - T T T I / f F F
- - I T F F i I F F
- ! J I f T f 1 F
Nt a Triangie X X
N X
mosceles X X X
Squilateral A

oossble

Department of ISE = BMS Institute of Technology and Mgmt

Introduction:

Let’s count marbles ...

a lot of marbles e Suppose we have a big

bowl of marbles. How can
we estimate how many?

o | don’t want to count every
marble individually

o | have a bag of 100 other
marbles of the same size, but
a different color

o What if | mix them?

66

 Estimating marbles

e | mix 100 black marbles
into the bowl

o Stir well ...

e | draw out 100 marbles at
random

e 20 of them are black

e How many marbles were
in the bowl to begin with?

67

qECHNO,,

& e,

N A

IS

gvg;ggwg

A F ol

WG
o 2
o —
ROTTSY

e

Estimating Test Suite Quality

e Now, instead of a bowl of marbles, | have a
program with bugs
e | add 100 new bugs

Assume they are exactly like real bugs in every way

| make 100 copies of my program, each with one of my
100 new bugs

e | run my test suite on the programs with
seeded bugs ...
° ... and the tests reveal 20 of the bugs
o (the other 80 program copies do not fail)

Test Suite

Test suite 1s a container that has a set of tests which helps
testers 1n executing and reporting the test execution status. It

can take any of the three states namely Active, Inprogress
and completed.

Test Suite - Diagram:

Test Suite 1

Test Plan

Fault-Based Testing [TDM]

_ | The Basic concept of fault-based testing
is to select test cases that would
distinguish the program under test
from alternative programs that
contain hypothetical faults

e TDM- Test Data Management

70

Definition:

Fault-based testing is the process of demonstrating the
absence of pre-specitied faults in a module under test (MU'T).

Explanation:

The definition given here has a particular focus, scope, and
goal.

The focus 1s on faults rather than errors.

The scope 1s limited to pre-specified faults rather than all
possible faults.

The goal is to demonstrate the absence of faults, not merely
to look for faults (or errors).

R
e,

ALURY

]

Assumption in Fault-based Testing=
o The effectiveness of fault-based testing
~ depends on the quality of the fault model and
on some basic assumptions about the relation of
the seeded faults to faults that might actually be

present.
e Competent programmer hypothesis.
e Coupling Effect.

e [Fault based testing can guarantee fault detection

only if the competent programmer hypothesis
and coupling effect hypothesis hold. [TDM]

Fault-Based Testing: Terminology
| Original program The program unit (e.g.. C function or Java class) to be tested.

' Program location A region in the source code. The precise definition 1s defined relative to the
syntax of a particular programming language. Typical locations are statements, arithmetic and
Boolean expressions. and procedure calls.

Alternate expression Source code text that can be legally substituted for the text at a program
location. A substitution 1s legal if the resulting program is syntactically correct (1.e.. it compiles
without errors).

Alternate program A program obtained from the original program by substituting an alternate
expression for the text at some program location.

Distinct behavior of an alternate program R for a test f The behavior of an alternate program R
s distinct from the behavior of the original program P for a test #.if R and P produce a different
result for ¢. or 1f the output of R 1s not defined for 7.

Mutation Analysis

e Mutation analysis is the most common form of
software fault-based testing.

e A fault model is used to produce hypothetical faulty
programs by creating variants of the program
under test.

e Variants are created by “seeding” faults,

i.e making a small change to the program under test
following a pattern in the fault model.

e The patterns for changing program text are
called mutation operators, and each variant
program 1s called mutant.

° A mutant is a copy of a program with a mutation

o A mutation is a syntactic change (a seeded bug)
o Example: change (i <0) to (i <= 0)

e The basic principle in mutation testing is that small
changes are made 1n a module and then the
original and mutant modules are compared.

* Run test suite on all the mutant programs

e A mutant 1s killed if it fails on at least one test
case

e If many mutants are killed, infer that the test
suite is also effective at finding real bugs

Mutant: A program with a planted fault

o Execute mutants on each member of test set Compare
results.

o Mutation Adequacy Score =D/N
D=No. of dead mutants
N = No. of non equivalent mutants

c=a+hb; c=a-b;
l l
R1 R2

If (R1 =R2): mutant is alive otherwise it is killed.

/** Convert each line from standard input */

void transduce() {
#define BUFLEN 1000
char buf[BUFLEN]: /* Accumulate line into this buffer */
int pos=0: /* Index for next character in buffer */

char inChar: /* Next character firom input */

int atCR = 0: /* 0="within line", 1="optional DOS LF" */
while ((inChar = getchar()) != EOF) {

switch (inChar) {

case LF:

if (atCR) { /* Optional DOS LF */
atCR =0:

} else { /¥ Encountered CR within line */ 26
emit(buf. pos): 27
pos=0: 28

} 29

break: 30

case CR: -fl

emit(buf, pos): ;i
pos=0; 34
atCR =1 35

}

break:
default:
if (pos >= BUFLEN-2) fail("Buffer overflow"):
buf[pos++] = inChar:
}/* switch */
}
if (pos > 0) {
emit(buf, pos):

}

sar struct for
eference replacement

with a struct field S

(¢Open table as Operator _Descripﬁon Constraint
spreadsheet ID
Operand Modifications
| crp onstant for constant [replace constant C1 with |Cl #C2
eplacement constant C2
SCr scalar or constant |replace constant C with scalar |C#X
eplacemenr variable X
acr rray constant replace constant C with array |C = A[]]
placemenr reference A[J]
SCr struct constant replace constant C with sttuct |[C =S
eplacemenr field S
SVI scalar variable |replace scalar variable X witha X =T
replacement scalar variable ¥
Csr constant for scalar |replace scalar variable XY witha X #C
wvariable replacement constant C
asr rray for scalar variable |replace scalar variable X with (X # A[]]
eplacement an array reference A[7]
=Open table as |Operator Description Constraint
spreadsheet ID
SST struct for scalar [replace scalar variable X with X #S
replacement struct field .S
vie scalar variable [remove initialization of a scalar
initialization variable
elimination
car onstant for array [replace array reference A[7] A[J]#C
eplacement with constant C
sar scalar for array replace array reference A[J] |A[I]#C
eplacement with scalar variable X
cnr omparable array [replace array reference with a
eplacement comparable array reference
array replace array reference A[J] |A[I]ES

Expression Modifications
abs Iabsolute value insertion [replace e by abs(e) |e <0
aor rithmetic operator replace arithmetic operator y |eiWexfei0er
eplacement with arithmetic operator @
lcr ogical connector [replace logical connector y |lejWes #
eplacement with logical connector @ e10e;
|r01‘ elational operator replace relational operator y leqye; #
eplacement with relational operator @ e10e)
101 Iu.naly operator insertion |insert unary operator
cpr onstant for predicate |replace predicate with a
eplacement constant value
Statement Modifications
sdl statement deletion delete a statement
5Ca switch case replace the label of one case
replacement with another
58S end block shuft move } one statement earlier
and later

79

Mutation Operators

e Syntactic change from legal program to legal
program

So: Specific to each programming language. C++
mutations don’t work for Java, Java mutations don’t
work for Python

o Examples:

° crp: constant for constant replacement

for instance: from (x < 5) to (x < 12)

select from constants found somewhere in program text
o ror: relational operator replacement

for instance: from (x <=5) to (x < 5)
o vie: variable initialization elimination

change intx =5; tointx;

Fault-Based Adequacy criteria

" Grven a program and a test suite 7. mutation analysis consists of the following steps:

~ Select mutation operators If we are interested in specific classes of faults. we may select a set of
mutation operators relevant to those faults.

Generate mutants Mutants are generated mechanically by applying mutation operators to the
original program.

Distinguish mutants Execute the original program and each generated mutant with the test cases in
T . A mutant is killed when it can be distinguished from the original program.

TS={1U,1D,2U,2D,2M End,Long}

81

Mutant can remain live for two reasons

v The mutant can be distimguished from the ongmal progtam, but the test sute T dogs o
contain a test case that distinguishes them (1¢.. the test suie 15 not adequate with espect to
the mutant)

+ The mutant cannot be distinguished from the origimal program by any test case (1., the
mutant s equivalent o the origmal program).

82

Estimating Population Sizes

e Counting fish Lake Winnemunchie is inhabited by two
kinds of fish, a native trout and an introduced species of
chub. The Fish and Wildlife Service wishes to estimate the
populations to evaluate their efforts to eradicate the chub
without harming the population of native trout.

The population of chub can be estimated statistically as
follows. 1000 chub are netted, their dorsal fins are marked
by attaching a tag, then they are released back into the
lake. Over the next weeks, fishermen are asked to report
the number of tagged and untagged chub caught. If 50
tagged chub and 300 untagged chub are caught, we can

calculate
1000 5()

untageed chub population 300

Counting residual faults

e A similar procedure can be used to estimate the
number of faults in a program: Seed a given
number S of faults in the program. Test the
program with some test suite and count the
number of revealed faults.

e Measure the number of seeded faults detected,
DS, and also the number of natural faults DN
detected. Estimate the total number of faults
remaining in the program, assuming the test suite
IS as effective at finding natural faults as it is at
finding seeded faults, using the formula

S Dg
total natural faults m

-

Agenda

. Introduction

. Fault-Based Testing [TDM]

. Assumption i1n Fault-based Testing
. Fault Based Testing — Terminologies
. Mutation Analysis

. Fault-Based Adequacy criteria

. Variations on Mutation

. Fault-based testing criteria

9. Test Execution

10.Scaffolding

11.Test Oracles

12.Capture & Reply

13.Conclusions

0 =-JO Ot~ W H

Unit-7:Fault-Based Testing, Test Execution 85

Variations on Mutation

e Weak mutation
e Statistical mutation

Weak mutation

e Problem: There are lots of mutants.
Running each test case to completion on

every mutant is expensive

Number of mutants grows with the square of
program size

e Approach:

o Execute meta-mutant (with many seeded
faults) together with original program

o Mark a seeded fault as “killed” as soon as a
difference in intermediate state is found
Without waiting for program completion
Restart with new mutant selection after each “kill”

Statistical Mutation
e Problem: There are lots of mutants.
Running each test case on every mutant

IS expensive

It's just too expensive to create N2 mutants for a
program of N lines (even if we don’t run each test
case separately to completion)

e Approach: Just create a random sample
of mutants

> May be just as good for assessing a test suite

Provided we don’t design test cases to Kill
particular mutants (which would be like selectively
picking out black marbles anyway)

In real life ...

e Fault-based testing is a widely used In
semiconductor manufacturing

o With good fault models of typical manufacturing
faults, e.g., “stuck-at-one” for a transistor

o But fault-based testing for design errors is more
challenging (as in software)

e Mutation testing is not widely used in industry

o But plays a role in software testing research, to
compare effectiveness of testing techniques

e Some use of fault models to design test cases
IS Important and widely practiced

Mutation Analysis Procedure =

1.

Generate a large number of

by replicating the original
program except for one small change (e.q,,
change the “+” in line 17 to a “-”, change the
“<“in line 132 to a “<=“, etc.).

Compile and run each mutant program
against the test set.

(cont’d)

Mutation Analysis Procedure
(cont'd)

3. Compare the ratio of (i.e.,
revealed) by the test set to the number of

e The higher the “kill ratio” the better the test
set.

91

Error Seeding

o A similar approach, Error Seeding, has been
used to estimate the

remaining in a program.
e But such metrics are inherently problematic.

For example, how many “errors” are in the
following Quick Sort program?

Error Seeding Procedure

1. Before testing, “"seed” the program
with a number of
keeping careful track of the changes

made.
2. After a period of testing,

(cont’'d)

Error Seeding Procedure (cont’d)

3. If N is the total number of errors seeded,
iIs the number of seeded errors detected,
and x is the number of non-seeded errors
detected, the number of remaining (non-
seeded) errors in the program is about

e What assumptions underlie this formula?
e« Consider its derivation...

Derivation of Error Seeding Formul

Let X be the total number of NON-SEEDED errors
in the program

Assuming seeded and non-seeded errors are
equally easy/hard to detect, after some period
of testing,

So,

as claimed.

Fault-based testing criteria

Error Seeding
o Estimate the number of faults that remain
o Measure quality of software testing

r = # artificial faults detected

f = # of not seeded errors detected

Estimated no. of inherent faults = (1/r)*f

o Applicable to any testing method

o Dependent on how faults are introduced

Fault-based testing criteria

Program Mutation Testing
Mutant: A program with a planted fault
o Execute mutants on each member of test set
o Compare results
o Mutation Adequacy Score =D/N
D=No. of dead mutants
N = No. of non equivalent mutants

c=a+b; c=a-—Db;
l l
R1 R2

If (R1 = R2): mutant is alive otherwise it is killed.

Fault-based testing criteria

Variants of Program Mutation Testing
> Weak Mutation Testing
Proposed to improve efficiency
Mutate and test components
> Firm Mutation Testing

Select portion of program , subset of parameters
and mutate them.

Compare original and changed versions

Less expensive than strong mutation testing, more
efficient than weak mutation testing

No basis to select area of program code, parameters

Fault-based testing criteria

Criteria Inclusion Hierarchy

Strong Mutation Testing

l

Firm Mutation Testing

l

Weak Mutation Testing

99

Fault-based testing criteria

Perturbation Testing (Deviation of a system)

e Tests the robustness of a program
e Predicted fault tolerance = # of faults detected
total # of executions

e A perturbation function is applied to change the data state
Example:

Int perturbation (int x)

{
Int changedX;
changedX = x + 50;
return changedX;,

Fault-based testing criteria

Perturbation Testing

Original program

main()
{int x;
X = getVal();
If (x>0)
printf(*“X is positive”);
else
printf(“X is negative”);

}

Fault injected program

main()
{int x;
X = getVal();
X = perturbation(x);
If (x>0)
printf(“X is positive”);
else
printf(“’X is negative”);

}

o iy ®
‘ WeaLyrs-° #

Department of ISE BMS Institute of Technology and Mgmt

My Details
Dr. Manjunath T. N.

Professor
Dept.of. ISE
BMSIT, Bengaluru

Email: manju.tn@bmsit.in
manju.tn@gmail.com
Mobile:+91-9900130748

3/5/2018 Department of ISE = BMS Institute of Technology and Mgmt

Software Testing

Automated Testing

Mamual Testing

Software Cuality Assurance

Module - 3: Structural Testing
By

Dr.Manjunath T N
Professor

Testing

‘r \ -\ J”"’ E X T “ - ‘/..\
SO1Ttware

Department of ISE = BMS Institute of Technology & Mgmt

Agenda

. Overview of Structural Testing

. Statement Testing

. Branch Testing and Condition Testing
. Path Testing : DD Paths

. Test Coverage Metrics

. Basis Path testing

. Data Flow Testing — Define- Use Testing
. Slice Based

9. Test Execution

10.Scaffolding

11.Test Oracles

12.Capture & Reply

13.Conclusions

0O Ot WD

Department of ISE = BMS Institute of Technology & Mgmt

Software Testing — White Box

1.Basis Path Testing - In Lab we have Exercise 10,11
&12

2.Data Flow Testing — In Lab we have Exercise 9

Example
Some of the Basic Definitions: E = {e,, & €. &1 &5, . €1, 04}
N = {n,, ny, N3, N, N3} 7
1.Graph - G(V,E) #ofEdges .°
2.Types of Graph — Directed & Undirected, Node Indeg Outdeg

Cyclic & acyclic
3.Indegree & Out degree

Department of ISE | BMS Institute of Technology & Mgmt

Software Testing — Basis Path

Program Graph

The techniques followed for path testing start with the
program graph

— Given a program written in an imperative programming
language, its program graph is a directed graph in which
nodes are either entire statements or fragments of a
statement, and edges represent flow of control

— If 1 and | are nodes in the program graph, there is an edge
from node i to node | if and only If the statement (fragment)
corresponding to node | can be executed immediately after
the statement (fragment) corresponding to node |I.

Department of ISE | BMS Institute of Technology & Mgmt

Software Testing — Basis Path

Statements fragment examples:

Begin / End

e convenient to have those as fragments

e Some argue that they are not always better to be
fragments (e.g. then begin), there is no problem in this
case when the graph is composed

The Importance of a program graph is that program
executions correspond to paths from the source to the
sink nodes.

Test cases force the execution of some program path

Department of ISE | BMS Institute of Technology & Mgmt

Software Testing — Basis Path

Flow Graph Notation

Notation for representing control flow

O O

Qo | o
O O

Sequence If-then-else if-then Case

/ % 8\‘2
\ o &
O

Pre-test loop Post-test loop

Department of ISE | BMS Institute of Technology & Mgmt

Constructing a program graph from a given program based on above notations is

easy. 1. Program triangle

. Dim a,b,c as integer

Dim isatriangle is boolean
Output(“enter 3 sides of a triangle”)

Input(a,b,c)

Output(“side a 1s",a) '
Output(“side b is”,b) hea
Output(“side ¢ 1s”,¢)

0. Iffa<b+c) and (b<a+c) and (¢c<a+b)

10.Then isatriangle= true

11. Else 1satriangle=false

12. Endif €
13.1f istriangle

14.Then if (a=b) and (b=c¢)

15.Then output(“equilateral”)

16.Else if(a not=b) and (a not=c) and (b not=c)
17.Then output(“scalene”)

18. Else output(“isosceles”)

19. Endif

20. Endif

21.Else output(“not a triangle”)

22 Endif

23.End triangle

I

Department of ISE | BMS Institute of Technology & Mgmt

Cont..

Observations
Nodes 4-8 are a sequence. there 1s no branching
— Nodes 9-12 are an IF-THEN-ELSE construct
—~ Nodes 13-22 are nested IF-THEN-ELSE constructs
— Nodes 4 and 23 are the program source and sink nodes
* Single entry. single exit

— There are no loops, so this 1s a directed acyclic graph

Department of ISE | BMS Institute of Technology & Mgmt

Decision — To — Decision Paths (DD-Paths) .

X
‘\'.
0
-

3,3

The best known form of structural testing is based on decision-to-decision
path.

A DD-paths is a sequence of statements that begins with the “outway” of a decision
statement and ends with the “inway® of the next decision statement.

— There are no internal branches in such a sequence

— Like a row of dominos

We will define paths in terms of nodes in a directed graph
Paths = chains

*Chain:

— a path in which the initial & terminal nodes are distinct

— every interior node has indegree = 1 and outdegree = 1

— A chain can consist of only one node & no edges

— Length of chain is the number of edges

*Every statement in a program is a member of one and only one DD-Path
*The objective is to scan the program to break it into a number of unique DD-

paths, and use each of those paths as a node to build a DD-Path Graph.
-DD-Paths enable NSRS USSR Y SIS (nstiute of Tachncicyy & Mgmt

COntooo Intenior nodes & A

O ()) (> O
J _/ _/ L ¥ \
Initial node: Terminal node:
Outway of a Inway of the next
decision statement decision statement

A chamn of nodes 1n a directed graph of length =4

The length of the chain= the number of edges

Department of ISE | BMS Institute of Technology & Mgmt

DD-Path Definition

Definition
A DD-Path is a sequence of nodes in a program graph such that

Case 1. it consists of a single node with in-degree =0
— This is the source node (the initial DD-path)

Case 2: it consists of a single node with out-degree =0
— This is the sink node (the final DD-path)

Case 3: it consists of a single node with in-degree >=2 OR out-degree >=2
— Assures that no node is contained in more than 1 DD-path

Case 4: it consists of a single node with in-degree = 1 AND outdegree = 1
— Needed for short branches

Case 5: it is a maximal chain of length >=1

— Normal case: single entry, single exit sequence of nodes
— Each node is 2-connected to every other node

» 1.e. there is a path from node ni to nj (& not the reverse)

Department of ISE | BMS Institute of Technology & Mgmt

Program Graph & DD-Path

Refer the program graph of triangle program

Program Graph Modes DD-Path Mame Case of Definition

1 First 1

5.8 A 3

9 B 3

|0 L 4

11 D 4
12 E
13 F

14 H !

15 I 1

16 1 3

17 K 4

18 L 4

19 Y | 3

20 N 3

' 2] G +
22 0

s Last i

Department of ISE | BMS Institute of Technology & Mgmt

DD-Path Graph

© -
DD-Path Graph: <-T> =
Defimiion: Given a program written 1n an imperative language. tts DDPath graph (). ®
directed graph 1n which nodes are DDPaths of its program graph. and edges represent ¢ 7// ‘ \\ L
flow between successor DD-Paths. 10 (c.\< (») 11
The DD-Path graph is a form of condensation graph. in this condensation \QIQ e
— 2-connected components are collapsed info idividual nodes that correspond fo case 5 £). 48
Paths T / N -
— Single node DD-paths (cases 1-4) are required to assure that every statement is in €3 (g }‘?/ -
one DD-Patt sGS G)ae
o=y }\ 1s
19 (30
20(-\:)/
20
DD-Path graph for Triangle program
U8
23\ sy

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

Steps to Build a DD-Path Graph

1. Number the program statements and 'or fragments
2. Draw a program graph
3. Divide program graph mnto DD-paths

F
fDIﬂE 1fy i:-l.rhich program graph nodes form each DDpath (according to the 5 cases 1n the defimtion
of DD-path:

" Name each DD-path (4B, efc)
4. Build the DD-Paths Graph

Department of ISE | BMS Institute of Technology & Mgmt

Y N
o7 iy

oI
Wearyry-®

Test Coverage Metrics

Test Coverage Metrics

The raison d etre of DD-Paths is that they enable very precise description of test coverage.

One of the fundamental hmitations of functional testing 1s that it 15 impossible to know either
the extent of redundancy or the possibility of gaps corresponding to the wav a set of
functional test cases exercise a program.

Venn diagram showing relationship among specified. programmed and tested behaviours.
Test coverage metrics are a device to measure the extent to which a set of test cases covers a
program.

“Test Coverage metrics are a device to measure the extent to which a set of test cases
Cavers a program”

Several widely accepted test coverage metrics are used; most of those in a below Table

Department of ISE | BMS Institute of Technology & Mgmt

Table: Structural test coverage metrics

Description of coverage

Every statement

Every DD-Path (predicate outcome)

Every predicate to each outcome

C, coverage + loop coverage

| C, coverage + every dependent pair of DD-Paths

Muluple condition coverage

Every program path that contains up to k
repetitions of a loop (usually k=2)

“Statstically significant™ fraction of paths

All possible execution paths

Predicate = statement fragment

Most quality orgamizations now expect the C1 metric as the mmimum acceptable level of test coverage

There are always fault types that can be revealed at one level and can escape detection by infenor levels of

testing

Department of ISE | BMS Institute of Technology & Mgmt

Metric Based Testing

Metric Based Testing

Metric based testing are techniques that exercise source code in terms of the structural test
coverage metrics. These coverage metrics require that we find a set of test cases such that,
when executed, every node of the program graph is traversed at least once

1. Statement and predicate testing:

We allow statement frazments to be individual nodes

. Hence, levels CO & C1 collapse into 1 level

. Jodes 8.9,10 are a complete IF-THEN-ELSE statement, if we follow CO0, we
could only execute one of the decision alternatives and satisfy the statement
coverage criteria

. When the statement is divided into fragments. we could do
predicate outcome coverage

2. DD-Path testing

b
When the Tl metric iz exercized, we traverse every edge of the DD-Path, and thus
every fragment, as opposed to every mode.

. For IF-THEN-ELSE statements, the true and the false branches
are covered (Cip)

. For CASE statements, every clause 1s covered

Longer DD¥-Path: zenerally represent complex computations

¢ We could consider each one of those an mdividual function

e It may be approprate to apply a number of functional tests like
boundary and special value tests.

Department of ISE | BMS Institute of Technology & Mgmt

F

Cont...

3. Dependent Pairs of DD-Paths

The most common dependency among pairs of DD -Paths 1=
the define/reference relationship (define/use)

* Where a variable 1s defined and could recetve a value
in one DD-Path and 1s referenced 1n another DD-Path.

N B
S5 —
“WeaLyrs-®

LR

4. Multiple Condition Coverage

" Node B corresponds to statement 9 in the program graph, line 9:
IF(a<brc)AND(b<a+c)AND{c<ath)

— Node H corresponds to statement 14 1n the program
graph: IF (a=b) AND (b=c)

— Rather than simply traversing such predicates to their TRUE and
FALSE outcomes, we could investigate the different ways that each

ouICome Can occur

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

. . . --m-’:
— There is a tradeoff between statement complexity versus path complexity Shaanun J

— Mulrtiple Condition Coverage assures that this complexity isn’t swept under the DI
Path coverage 1rug!

S. Loop coverage

Loops are a highly prone portion of source code

— Types of loops

1. Concatenated loops: a sequence of disjoinr loops

2. Nested loops: one is contained inside the other3. Knotted loops: are Horrible loops!.
when it is possible to

3. Knotted loops: Branch mto or out from the middle of a loop, and these branches are
internal to other loops

Loop Testing

-every loop involves a decision, and we need to test both outcomes of the decision (traverse loop
Or exift)

— We could do boundary value analysis on the index of the loops,. or robustness testing

— F the bodv of a simple loops 15 a DD-Path that performs a complex calculation. functional
testing could also be used

— Once a loop has been tested, 1t should be condensed into a single node
— If loops are nested. this process 1s repeated starting with the mmnemmost loop and working

outward.
Department of ISE | BMS Institute of Technology & Mgmt

Cont...

NN
o —
“Wearyry-®

LR

Concatenated loops Nested loops Knotted loops
(-_ o ;) (-- I :) (o _-.;
| | |
G D) _ CsA :) (-.'\ -) -
\' "\ l '\\
g e N \
(B) (s) \ (B D)
\ ’. -)) // o l) . p
(> () » (<
< o < (? = / \ < =
) o B > N s
(D) (D>) Ry)
| 'i I
(_'_ tnst) Ctnay S

Department of ISE | BMS Institute of Technology & Mgmt

Basis Path Testing

Basic Path Testing

« Mathematicallv vsuallv define a basis in terms of a structure called a vector space,
which is a set of elements (called vectors) as well as operations that comrespond to
multiplication and addition defined for the vectors.

*« The basis of a vector space 15 a set of vectors that are independent of each other and
span the entire vector space.

McCabe’s Basis Path Testing

o A testing mechanism proposed by McCabe

« Aim is to derive a logical complexity measure of a procedural design and use this as
a guide for defining a basic set of execution paths.

« An execurion path is a set of nodes and directed edges in a flow graph that connects
(in a directed fashion) the start node to a terminal node.

Two execution paths are said to be independent if they do not include the same set of
nodes and edges

Department of ISE | BMS Institute of Technology & Mgmt

Cont..

Independent paths

Lesson. Paths must be feasible

Generating independent paths
« Generate one feasible path (a2 "baseline” path)

- Generate further paths by “flipping” each decision
point in turn
— Decision paint is a node wath ouldegree > 2
‘Flipping”® s taking a different edge than those taken
previously

- A “technically” feasible path may not be feasible “logically”
(according to the logic of the program)

Department of ISE | BMS Institute of Technology & Mgmt

Basis Path Testing

Basis path testing 15 a hybrd between path testing and branch testing.
[}
Path Testing: Testing designed to execute all or selected paths through a computer system.

[
Branch Testing: Testing designed to execute each outcome of each decision point 1 a computer

profram

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

=4
Figure a 15 taken from [McCabe 82]; it 15 a directed graph which we might take to be the
program graph of some program. the original notation for nodes and edges is repeated here.
(MNotice that this is not a graph derived from a structured program: nodes B and C are a loop
with two exits, and the edge from B to E is a branch into the IF-THEN statement 1n nodes D,
E. and F. The program does have a single entry (A) and a single exit (G).) McCabe based his
view of testing on a major result from graph theory, which states that the cyclomatic number
of a strongly connected graph 15 the number of linearly independent circuits in the graph.

A A

® —Z e
o —
“Wearyrs-® (

We can always create a strongly connected graph by adding an edge from the (every) sink
node to the (every) source node. (INotice that, if the single entry, single exit precept is
violated, we greatly increase the cyclomatic number, because we need to add edges from each

sink node to each source node.)
Figure 2 shows the result of doing this; it also contains edge labels that are vsed in the
discussion that follows.

There 15 some confusion m the literature about the correct formula for cyclomatic complexity.
Some sources give the formula as V(G) = e - n + p. while others use the formula ViG)=e -n
+2p

Department of ISE BMS Institute of Technology & Mgmt

H z
P H
@ S
oI
‘ Wearyry-® (
o000

Where E =nmumber of edges in G
N =number of nodes 1n G and

P = mumber of connected regions

The munber of linearly independent paths from the source node to the sink node in Figure a:

V(G)= e-n+2(p) = 10-7+2(1)=5

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

Figure b - For Strongly connected graph We use ViG)=e-an~-p

V(G)= e-n+p = 11-7+1=5

The cyclomatic complexity of the strongly connected graph in Figure b 1s 5, thus there are five linearly
independent circuits. If we now delete the added edge form node G to node A, these five circuits
become five linearly independent paths from node A to node G. In small graphs. we can visually

identify independent paths. Here we 1dentify paths as sequences of nodes:

pl: A B C.G
pLA B C.B.C.G
A BEFG
rh ADEFG

p ADF G

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

Table path ' edges traversed

nath \ edoestraversed |1 /2 |3 |4 |56 |7 |8 |9 |10
of: A B C.G {jolofajojojo]ol¥]o
pLA.B.C.G 02 AB.C.BCG 110 210101010110
02:AB,C.B,C.G|p& AB,EF,G 110 J0°[0 J#80 |0 |1]0 |1
pABEFG |pd ADEF.G 011000 B0 |1]0]1
phADERG o5 ADFG 0 [10fo]o [0 o0 fo0 [t
pADREG o ABCBEFG [1]0[t[1]1 o010t
ex2: AB,CB.CB.CG [1]0f2]3[0{0]0(0]1(0

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

Observation on McCabe’s Basis Path Method

If you had trouble following some of the discussion on basis paths and sums and products of these, vou may
have felt a haunting skepticism. something along the lines of “Here s another academic oversimplification of
real-world problem”. Fightly so, because there are two major soft spots m the McCabe view: one is that testing
the set of basis paths 15 sufficient (it’s not), and the other has to do with the voga-like contortions we went
through to make program paths look like a vector space. McCabe’s example that the path A B, C.B.C.B.C. G
15 the linear combination 2p2 - pl is very unsatisfactory. What does the 2p2 part mean’ Execute path p2 twice?
{Yes, according to the math) Even worse, what does the - pl part mean? Execute path pl backwards? Undo the

most recent execution of pl? M&tﬁn—e?ﬁrﬁ&mﬂﬁcﬂ soplustries like this are a real turn-off to
practitioners locking for solutions to their very real pro . - T

To get a better understanding of these problems. we’ll go back to the tnnangle program example.

McCabe cyclomatic metric

JOJCREY

@ _©
@ ViGl=e-n+2p
®
© ® VIG)=20-17+2=8
® @ Five INCEDEndent paths
® 0
M = @

&

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

Independent paths for riangleDD-PATH by Base line path method

Note:- Base line path means it should contain more decision nodes (if node out degree =1 is
called decision node)

Ongmnal P1-First- A-B-C-E-F-H-J-K-M-N-O-LAST Scalene

Flip Pl at B P2- First-A-B-D-E-F-H-J-E-M-N-O-LAST Infeasible
FlipPl at F P3- First-A-B-C-E-F-G -O-LAST Infeasible
Flip P1 at H P4- First-A-B-C-E-F-H-I-N-O-LAST Equilateral

Flip P1 at JP5- Fust-A-B-D-E-F-H-J-L-M-N-O-LAST Isosceles

tfnnd:Cistr:VErsed,rhmwemﬂmvem:nnd:H.
Ifrx:bﬂhwverﬂed,ﬂmnwemmvnﬁenmjeﬂ.

Taken together, these rules, in coni i
T y Hhes \ punction with McCabe's baseline
- will yield I:hi'.: following feasible basis path set. Notice that lﬂ;julimw'
reduce the size of a basis set when basis paths must be feasible. “

P1: A-B-C-E-F-H-]-K-M-N-O-Last Scalene

pé: A-B-D-E-F-G-O-Last Not a triangle
P4 A-B-C-E-F-H-1-N-O-Last Equilateral
pS: A-B-C-E-F-H-J-L-M-N-O-Last Isosceles

Department of ISE | BMS Institute of Technology & Mgmt

= []
o7
‘ Wearyry-® ’

Cont...

1 #include=stdic.h=
2 #include<ctype.h=>
3 #include<conio.h=

4 #include<process.h=>
3 int main()

6 {
7

8

9

10
11
12
13
14
15
16
17
18
19

30}

inta. b, c;

clrscr():

printf{"Enter three sides of the triangle"):
scanf{"%d%d%d", &a, &b, &c);

if{ (a=b+c)&&(b=a+c)&&(c=a+b]])

1
if{(a==b)&&(b==c))
i
printf("Equilateral triangle™):
}
else if([(a!=b)&&(al=c) &&(bl=c])
1
printf("Scalene triangle™):
20 1
21 else
22 printf["Isosceles triangle"):
23 }
24 else
25 i
26 printf("triangle cannot be formed");
27 }
28 getch();
29return 0;

Department of ISE | BMS Institute of Technology & Mgmt

= L
o7
) Wearyry-® #

Program Graph for Triangle Program

Cont...

DD-Path Names | Program Graph Q
' Nodes
Fart 1§ |
| A 6789 | @
|B 10 |
|C 1 |
D 12 | @
|E | 13 i
3 | 14.15.16 @ O
o L R1
|H 15,1920 | Q
¥ 2122 |
E o | @ R2
|K 24252627 |
1| 00
I\ | 29 I R3
| Last W | O

Department of ISE Institute of Technology & Mgmt

Cont...

Caleulation of Cyelomatic Complexity ViG) by three methods
Alethod 1: The eyvelomatic complexaty of a connected graph 1= provided by the formmla VGl =e —n+ 2. The
pumber of edges 15 represented by e, the mumber of nodes by n. If we apply this formula to the graph ;iven
below, the number of lmearly independent ciremts 15:
Mumber of edges = 16
Mumber of nodez = 14
l6-14+2=4
Method I: VIG) =P + | (Where P — No. of predicate nodes with out depree =1)
ViGl=3+1=4 (C. E. G are the predicate nodes)
Method 3: V(G) = Number of enclosed regrons + 1
ViG)=3+1=4(E1l.E2. E3)

According to cvclomatic complexity 4 feasible basis path exists:

Pl= First, A B C,D, E,F,J,L,HM, Last Equilateral
p2= First, A B, C,D,E,G H,J,L,M, Last Scalens

P3i= First, A B, C, D0, E,G, I, J,L, M, Last Izoscslss

Pd= First, A B C,EK,L, M Last Kot a Triangle

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

The last step 15 to devise test cazes for the basis paths. Test caszes

IC . Input Expected Actual
D Test Case Descriphion Y IE! T EI'-‘Erput Output Status
Testng for]
1 requirement | 6 6 6 Equlateral
Path P1-To check for Tnangle
Equlateral Tnangle
Testing for o
2 PETE?:“EL;E 6 6 5 | Scalene Triangle
Sealene Tnangle]
Testing for
requurement =) Isosceles
* | Path P3- To check . s ! Trizngle
Izosceles Tnangle
Testing for N
4 requirement * 1 1 7 Hot a
PathP4- To Check triangle
Hot a triangle

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

i N

Example of Cyclomatic Complexity X i 5
J-) Condensing with respect to structured
] - programming constructs
(3) s
o On
(t)
W
s@ D o
COBROE
N
s -
L Cd
w oy

Department of ISE | BMS Institute of Technology & Mgmt

Data Flow Testing

DATA FLOW TESTING _

Data flow testing focuses on the points at which vanables receive values and the points at
which these values are uzed {or referenfed]. It detects 1mproper uze of data values (data
tflow anomalies) due to COMNE aITors. —
—_—
Bapps and Weyukers Motivaton®: * 1t 15 our belief that, just as one would not feel confident
zbout a program without executing every statement 1o 1t as part of some test, one should oot
feel confident about a program without having seen the effect of Using the value produced by
each and every computation.

Early data flow analvses often cantered on a set of faults that are known as definereference
anomalies.

\I_,_!f’ﬁ vanable that 15 defined but never used (referenced)
Y_#—A vanable that 15 used but never defined

L}"'A varlahle that 15 defined twice before 1t 15 used

Data flow testing
1. Define / Use Testing
2. 5lice-Based Testing

Department of ISE | BMS Institute of Technology & Mgmt

DEFINE/USE TESTING

DEFINE/USE TESTING

The following refers to program P that has program sraph & (F) and the et of program vanable: V. In
a program graph statement fragments are nodes and edges represent: node sequence & (F) hac cingle
enfry and single exit noda. We also dizallow edzes ffom node to fizelf The set of zll paths in P is
PATHS (P).

Definition:
— Nede n =G{(F) 15 2 defining node of the vanable v =V, wntten as DEF (v n), iff the

value of the vanable v = defimed arthe statement fragment corresponding to node n.

* For example: mmput . assiznment, loop control statements (for
it 1=0;1=-10:1++) and procedwre calls are defimng nodes

* When the code comresponding to such statement: executes,
contents of the memory locahon associated with v 15 changed

— Mode n eGP} 1= a usage node of the vanable v & 'V,
wrtten as USE(v.n), iff the value of the vanable v 15 used at
the statemnent fragment comresponding to node o

* For example: oufput, assignment (1:=1+1)., condition, loop

control Statements and procedure calls are usage nodes

* When the code comresponding to such statements executes. contents of the memory
location associated with + 15 not changed
— A usage node USE(v.n) 1= a predicare use (denoted as P-use), iff the statement o 15
a predicate statement; otherwise USE(v n) 15 2 comprranon use, (denoted C—u"e}

* Nodes cormresponding to predicate uses alwavs have an cutdegree = 2

* Nodes comresponding to computation uses alwavs have outdegree = 1
— A defiminon-use (sub) parh with respect to a vanable v {denoted du-path) 15 a (sub) path
i PATHS(P) such that for some v € V, there are define and usage nodes DEF(x,m)
& USE(x.) such that m & n are the 1mtial and final nodes of the (sub) path

Department of ISE | BMS Institute of Technology & Mgmt

Du-path - Definition

Definition of du-path:-

* Definition-use (du) path (wrt. variable v)
* A path in PATHS(P) such that
* forsomevinV

* There exist DEF(v, m), USE(v, n) nodes s.t.

* m and n are initial and final nodes of the path
respectively.

"~ per

e pe

Department of ISE | BMS Institute of Technology & Mgmt

Dc- path - Definition

Definition of dc path:-

i * Definition-clear (dc) path (wrt. variable v) i
* A du-path in PATHS(P) where

* the initial node of the path is the only defining
node of v (in the path).

Definition of P-use , C-use

A usage node USE(v.n) 15 predicate use denoted as P-case . if statement n 15 predicate
statement (example 1f 3--2)

If statement n 15 computation statement 15 denoted as C-case (example C=C+2)

Department of ISE | BMS Institute of Technology & Mgmt

Example : f Commission problexm)

. program conmmisseonl INNBPLTT O I TTERELTT »

Commission Problem

Do lock | stock | barmrels as Integer

D lockpraice stockprice | amrelprice 2= Feal

L oW e

) e
o —
) WeaLyrs-° #

Do totEl T ocks totalStocks | totalBarrel=s As Integar

Lk

D lockSales, stocksales bamrel=Sales A= Real
S D sales | commmission &= Feal

T. lockprice—45 (O

8 =stockprice= 300

Z. baryelpaice = 25 100

100 totzlilock s=—0

11. totzlstock=—0

12 totalbanrrel==0

13 anputilocks)

14 "Whle ot (locks= -1}

15 Input {=tock barrel)

18 Totallocks —total locks +lock=s

17. Totalstocks =total stock = —=stocks
18. Totalbaryrels = totalbarmrels +barreal=s
19 impaar (lock=])

20 Exnd VWale

21 . owipuat [“Locks sold™. total locks)
27 ocutput (CStocks sold’C, total stock sk
23 ouatput [FCBarrels sold ™. totalbzarel s}
24 lock=ale— lockpaice Ftotallock=

25 stock=ales— stockprice Ftotal=tock=

28 banrel=szles= baarelpirce Ftotalbarrel=

Department of ISE | BMS Institute of Technology & Mgmt

27 zales= locksales + stocksales+bamrelsales

CO n t soe 28 cutput “Totalsales™, sales)

29 _1f (zales == 1800.0% %‘m‘,‘
30. then moed

31. compmission = Q.10 * 1000

32 commussion =commuassion +0. 15 *300.0

33 commission = commssion +0_20 *{ sales ==1000)
34_ Else if (sales =1000)

35 Then

36. combpmission = 0. 10 * 1000.0

37. commussion = comomssion 0,15 ¥F((=ales-1 000,07
38. Else

39 combmmissiom ={.10 ¥ sales

40. End If

41. End If

42 output comrmission 1s 57, commission)

43 . End commmuission.

Department of ISE | BMS Institute of Technology & Mgmt

C O n t cee Program graph of the the commission problem

)0, O T, C.©

&

\
Z4i = @
i -,
‘ “WeaLury-® ’

—s a2 —> O
R 4
Department of ISE | BMS Institute of Technology & Mgmt

Cont...

DD-paths and Nodes for above example

DD-path:

MNodes

7.8.9.10,11.12.13,

14

15,16,17.18.19.20

71,32 73.34.35.6,27 78

29

30.31.32 33

34

35.36.37

3839

40

ol Rl Rl b o D] hn M mn | W] W] e WE

114247

DD-Path graph of the commission problem

Department of ISE

BMS Institute of Technology & Mgmt

o i
o7
Wearyry-®

LR

du-Paths for Stocks:

Fust, let us look at a3 simple path-the du-path or the vanakle stocks Wehae DEF(stocks.13)
andlTSE(=tocks.1 7).50 the path=-153.17= 15 adu-path with respect to stocks. Mo other 15 defining
nodes are used for stocks; therefore, thus path also defimtion clear.

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

du-Paths for Locks:

Two defimng and tero usage nodes make the locks +vanable more interesting: we have
DEF(locks,13),
DEF(locks, 19).1U5E{locks, 14}, and USE(locks, 16). These vield four du-paths:

Pl==1314=

Pl==13.1413 16=

P1==19.20.14=

P1==-1%.20,14,1516&=

Da-paths pl and p2 refer to the primung

Value of locks, which 15 read at node 13: locks has a predicate use n the while statementinode
14}, and if the condition 1= true (as 1o path p2), acomputation use at statement 16 The other
two du-paths start near the end of the while loop and ocour when the loop repeats.

du-Paths for totalLocks:

The du-paths for totallocks will be lead us to tvpical test cases for computations. With two
defining nodes{DEF(toallocks., 107 and DEF(totallocks, 16}) and three usage nodes
(USE(totalLocks, 16), USE(totalLocks, 21), USE(totalLocks.24)), We might expect six du-
paths. Let us take a closer look. Fath pi==10,11,12.13.1415 18> 15 a du-path ix whach the
mitial value of totallocks(0) has computation use.

du-Paths for Sales:-

Onlv one defining node 15 used for zales; therefore, all the du-paths with respect to sales must
be defimtion-clear. Thev are imteresting becausze they illustrate predicate and computztion
uzes. The

Furst 3 du-paths are easy:

Pl0==27 28

P11==27 18 29:-

Mofice that pl2 15 a defimtion-clear path with 3 usage nodes; 1t also contamn paths pl0 and
pll

If we were testing withpl 2, we
know P12==27, 28,2930,31,32.33=

Department of ISE | BMS Institute of Technology & Mgmt

= °
o7
) Wearyry-® #

Cont...

We would also cowver the other 2 paths.

Takble 1: DrefineTIze Modes for vanzbles in the comymizsion problem

Variable Defined at Node Lsed al Node
lockPrice rd 24
stockPrice 8 25
barrclPrice 9 26
totalLocks 10, 16 16, 21, 24
totalStocks ™, 17 17, 22, 25
totalBarrels 12, 18 18, 23, 26
locks 13, 19 14, 16
stocks 15 17
barrels 15 18
lockSales 24 27
stockSales 25 27
barrelSales 26 27
sales 27 28, 29, 33, 34, 37, 38

COmMMmMISSiomn

31, 32, 33, 36, 37, 38

32, 33, 37, 41

Table 2: Selected defineTJze paths

Pacly rlregirvevirig.,

w=raed p

s dondrfe= ftercfees Cre=fdrndft ey
lesa—bs Froeicoa= . 2 e
= e e Fr ces n, 25 LSk
EBarrel Price =, 26 W
(=T 1 R s e 10, 17 _ =
total Staoc ks 11, 23 e l="
Tent@al SHtewea ks 17, = R T =
testanl St o bos 1F. 17 Ty
titalStoc ks 17, = (g =1
teatoal St bem M7, 25 Fa ="
lese=le = TR, T4 L=
s s TS, 1= =
e b s T8, Mis P
N b = = pg
=am laee s 2F,. 2 s
= lems 27, 2o e
s o e e Zz7F, 33 T
manlleres 27, 2 e L
sSalaes 27, 37 T
o == = W e

8,

L &
“Wearyry-® ’

Table 3: du-Paths for Commus=1on:

Cont.. R

Path (begirning, end)

Variable Nodes Feasibied
commission al, 32 yes
commission 31, 33 Yies
commission 3N, 37 no
commission 31, 41 yes
commission 32, 32 yes
commission 32, 33 yes
commission 32, 37 no
commission 32, 41 ves
commission 33, 32 no
commission 33, 33 yes
commission 33, 37 no
commission 33, 41 YEes
commission 36, 32 no
commission 36, 33 (3T’
commission 36, 37 yes
commission 36, 41 ves
commission 37, 32 no
commission 37,33 no
commission 37, 37 yes
commission 35,41 000000 yes
Commission 38, 32 no
commission 38, 33 no
commission 38, 37 no
commission 38, 41 ves

Department of ISE | BMS Institute of Technology & Mgmt

MY <
®s

Test Coverage Metrics
du-path Test Coverage Metics o

[All-Paths]

.

[All-Diu-Paths

-

All-Tzes

'

/
i

. S
= il .
—
('/”-'/ -‘-_‘_‘--\-‘

[All C-Uses/'Some P-Tses J | All P-uses/ Some C-Tzes]
L.

: : X r,\

[" sn-Dett | I _

. AD-P-Uses]

i I[.’!LII-Ed,gu ‘

!
: FAII-I"-Tndea]

Department of ISE | BMS Institute of Technology & Mgmt

SLICE-BASED TESTING

Data flow testing focuses on the pomts at which variables receive values and the
pownts at which these values are used (or referenced). It detects improper use
of data values (data flow anomalies) due to coding errors.

Bapps and Weyulers Motivation®: ™ it 15 our belief that, just as one would not
feel confident about a program without executing every statement in it as part of
some test, one should not feel confident about a program without having seen
the effect of Using the value produced by each and every computation

Data flow testing
1. Define / Use Testing
2. Shice-Based Testing

Slice-Based Testing

The following refers to program P that has program graph G (F) and the set of
program variables V. In a program graph statement fragments are nodes and
edges represents node sequence .G (P) has single entry and single exit node. We
also disallow edges from node to 1tself The set of all paths in P 1s PATHS (P)

Definition:-Given a program P and a set V of vanables mn P, a slice on the
variable set V at statement n, written 5V n), 15 the set of all statements in P
prior to node n that contribute to the values of variables in V at node n. Listing
elements of a slice S(V, n) will be cumbersome becanse the elements are
program statement fragments. It 15 mmch simpler to list fragment numbers n

P(G).

Department of ISE BMS Institute of Technology & Mgmt

® o
7

=
‘ GALUR! ’

Cont...

USE TYPES DEF TYPES
P-use - Used in a predicate [-def-Defined by input

st

C-use - Usedm
computation A-def-Defined by assignment

O-use -Used for cutput

L-use - used for location
(pointers)

[-use Iteration (Internal
counters, loop indices)

Department of ISE | BMS Institute of Technology & Mgmt

Commission » _ R
Example :- The comwnission problem is used here becamse it contains

Problem interesting dataflow properties . and these are not present in the triangle
problemy or in next date function) Follow these examples while looking at the

source code for the commmission problem that we used to analyse in terms of
define/nse paths.

{ Commission problem)

1. program commizsion{INPITT, OUTTELUT)

2. Dum lock | stock |, bamrels as Integer

3. Dim lockprice stockprnice |, bamrelprnice As Beal

4. Dim totzILocks totalStocks | totalBarels A= Integer

(=1

. Dim lockSales, stockszales bamelsSales As Feal
6. Dim zales , commmssion As Feal
T. lockprice=45 10

8 stockprice= 30.0

2. bamrelprice =250

10 totallocks=

11. totalstock=={

12 totalbarrels=0

13 imput(locks)

14.Whle mot (Jocks= -1}

15 Input (stock barel)

16. Totallocks =total locks +locks

17. Totalstocks =total stocks +stocks

18. Totalbarrels = totalbarmrels +barrels

Department of ISE | BMS Institute of Technology & Mgmt

19 input (locks)
(: O n t 20.End While
eee 21 output (“Locks sald”™, total locks)

22, output (“Stocks seld”, total stocks)

23 output (Barmels sald”, totalbarmels)

24 Jock=ales lockprice *otallocks

25 stocksales= stockpnee *otalstocks

26 barrelsales= bamelprice *totalbarrels

27 sales= locksales + stocksales+barrel=ales

28, output] “Totalsales™, sales)

29, if (zales = 1800.0)

30. then

31. commussion = (.10 * 1000

32. commussion =commussion +0.15 *300.0
33.commission = commussion +1.20 *(sales =1000)
34. Else 1f {zales =1000)

35.Then

36. commussion = 0.10 * 1000.0

37. commussion = commassion +J.15 *(zales-1000.0)
38.Else

39. commmssion =0. 10 * sales

40. End If

41 EndIf

42. output {“commission 15 §7, commussion)

43. End conumssicn.

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

Prozram graph of the the commission problem

GO oG
{ibﬂlldhinﬁlﬁdb

Department of ISE | BMS Institute of Technology & Mgmt

Cont...

Skices on the locks varisble show why it is potentially fnult-prone it has 2 P-use at node 14
and a C-use at node 16 and has two defimitions, the I-defs at nodes 13 and 19.

51:5(locks 13)=113} I']:I.E. Sﬁtﬁ.fﬂ:!!' stocks and barmels are bonng. They are shnrt :hﬁnjtiun--:lea.r.paﬂls contaned
§2-S(locks, 14)=113.14.19.20} bE;E;E'l}fmﬁm a2 loop, so thev are not affected by iterations of the loop. (Think of the loop
S3:5(locks. 16)={13.14 19 20} Az a DD-Path.)

“4:50ocks 19={19
Stlocks.19)={15} §5:S(stocks,15)={13.14.15.19.20}
S6:S(ztocks 1 Ti={13.14.15.19.20}
S7:S(bamels, 15)={13,14,15,19.20}
58:S(bamels, 18)={13,14,15,19.20}

The pext three shees illustrates how repetafion appears mm shees. Mode 10 15 an A-def for
totalLocks

And node 16 contamns both an A-def and a C-use. The remaining nodes m 510013, 14,19 and
20 pertain to the Whale loop controlled by locks. Shee 510 and 511 are equal because nodes
21 and 24 are an O-use and a C-use of totalLocks respectively.

59:5(totalLocks, 1 0)={10}
510:S(totalLocks, 16)={10,13,14.16,19,20}
511-S(totalLocks, 21}={10,13,14.16,19,20}

The shices on totalStocks and totalBamels are quite similar. They are iahizhzed by A-defs at
nodes 11 and 12 and then are defined by A-defs at nodes 17 and 18, Again the remaining
nodes (13,1419 and 20 pertains to the While loop controlled by locks.

S12:-S(totallocks 11)={11}
§13:S{totall ocks_ 17}={11.13.14.15.17,19.20}
S14:S(totall ocks 22)={11.13.14,15.17,19.20}
515-5(totalBarels 12)={12}

S16:5(totalBarrels 18)={12.13.14.15.16.19.20}
§17-S{totalBarrels 23)={1213.14.15 18,1920}

Department of ISE | BMS Institute of Technology & Mgmt

Test Execution

It 1s the process of executing test cases intended
to find defects.

Automating Test Execution

« Designing test cases and test suites is creative
- Like any design activity: A demanding intellectual
activity, requiring human judgment
« Executing test cases should be automatic
- Design once, execute many times
« Test automation separates the creative human

process from the mechanical process of test
execution

Department of ISE BMS Institute of Technology & Mgt ing, Test Execution 54

Scaffolding (A Temporary Structure) %

Code developed to facilitate testing is called
scaffolding

Scaffolding has different parts
1. Test Harnesses
2.Drivers

3.Stubs

Scaffolding was made popular by the Ruby on Rails framework.

It has been adapted to other software frameworks, including OutSystems
Platform,Expressframework, Playframework, Django, MonoRail, Brail, S
ymfony, Laravel, Codelgniter, Yii, CakePHP, Phalcon PHP, Model-
Glue, PRADO, Grails, Catalyst, Seam Framework, Spring Roo, ASP.NET
Dynamic Data and ASP.NET MVC framework's..etc

Department of ISE = BMS Institute of Technology & Mgmt

Scaffolding ...

« Test driver

- A “main” program for running a test
« May be produced before a “real™ main program

« Provides more control than the “real” main program
- To driver program under test through test cases

« Test stubs
- Substitute for called functions/methods/objects
« Test harness

- Substitutes for other parts of the deployed
environment
= Ex: Software simulation of a hardware device

56

Department of ISE = BMS Institute of Technology & Mgmt

Test Oracles

Software that applies a pass/faill criterion to a
program execution 1s called a test oracle, often called
as oracle

Oracles

An essential part of the test scalffolding

ORACLE

DRIVER

Ckecks the

corrispondence
between the

Program under test actual result
and the

expected result

STUB \

Department of ISE = BMS Institute of Technology & Mgmt

Cane [Test Hart;e% |
T
. with Comparison Based

Test Input Oracie
Expected Output |— \ —o{ Compare L—’ Pass/Fail -
- Sy >

T Program
Under Test

.

58

Department of ISE = BMS Institute of Technology & Mgmt

Capture and Replay

« Sometimes there is no alternative to human
input and observation
- Even if we separate testing program functionality
from GUI, some testing of the GUI is required
~+ We can at least cut repetition of human testing

« Capture a manually run test case, replay it
automatically

- with a comparison-based test oracle: behavior same
as previously accepted behavior

« reusable only until a program change invalidates it

« lifetime depends on abstraction level of input and output

Capture and Replay Tools

« Often used for regression test development
- Tool used to capture interactions with the system under test.

= Inputs must be captured; outputs may also be recorded and
(possibly) checked.

- Examples:
« GUI testing tools
« Capture requires a working system to be available already! 59

Content of The capture record

Inputs, outputs, and other information needed to reproduce a
session with the system under test need to be recorded during the
capture process.

Examples:
- General information: date/time of recording, etc.

System start-up information
Events from test tool to system
« Point of control, event
Events from system to test tool
« Checkpoints / expected outputs

Time stamps

60

Department of ISE = BMS Institute of Technology & Mgmt

~ Integrating a Capture and Replay tool

™ —

>
q

co

GUI frameworks are typically event-driven architectures

- Various controls create events when they are created, activated, modified,
deactivated, or disposed.

= Input devices create events as per their functions: key pressed, key released,
mouse moved, ...

- Events are sent to an event dispatcher

During the capture process, the tool will register as an event listener

- Event notification method for the tool will record the details of all events that
occurmed.

During the replay process, the tool will register as an event source
(possibly also as a listener)

- For mouse and keyboard events, the tool has to substitute for the actual
devices as the event source.

+ Replay events should be initiated at the same relative time as during the capture.
- Other controls tssue events as usual (e.g. GUI button deactivated)

61

Department of ISE = BMS Institute of Technology & Mgmt

Conclusion

In a nut shell we have seen a brief Introduction to Structural
Testing, Test Execution, Scaffolding, Test Oracles, Capture &
Reply.

Department of ISE = BMS Institute of Technology & Ngaitt es

Software Testing
MODULE-4:PROCESS FRAMEWORK

. Validation

© ® N > Uk W

. Verification

. Relationship Between Validation & Verification

Dependability

Difference between validation & Verification
Degree of freedom

Basic Principles of Analysis & Testing
Improving the process

Conclusion

Process Framework

Process:

Process 1s a series of actions or steps taken in order to achieve a particular end.
Framework:

A framework is often a layered structure indicating what kind of programs can or should be

built and how they would interrelate.

Process framework deals with the different steps in a procedural manner , here we design test
framework in terms of process setup in the testing Team.

What Is Validation?

» Assessing the degree to which a software system actually
fulfills 1ts requirements, 1n the sense of meeting the user’s real
needs, 1s called validation.

» Are we building the right product???

What Is Verification?

» Checking the consistency of an implementation with a specification.

» An overall design could play the role of “specification”.

» A more detailed design could play the role of “Implementation”.

» Are we building the product right????

Difference between software Verification and Validation

Verification

Validation

Are we building the system righte

Are we building the right system®@

Verification is the process of evaluating products of a
development phase to find out whether they meet the specified
requirements.

Validation is the process of evaluating software at the end of the
development process to determine whether software meets the
customer expectations and requirements.

The objective of Verification is to make sure that the product
being develop is as per the requirements and design
specifications.

The objective of Validation is to make sure that the product
actually meet up the user’s requirements, and check whether the
specifications were correct in the first place.

Following activities are involved in Verification: Reviews, Meetings
and Inspections.

Following activities are involved in Validation: Testing like black box
testing, white box testing, gray box testing etc.

Verification is carried out by SQA team to check whether
implementation software is as per specification document or not.

Validation is carried out by testing team.

Execution of code is not comes under Verification.

Execution of code is comes under Validation.

Verification process explains whether the outputs are according
to inputs or not.

Validation process describes whether the software is accepted by
the user or not.

Verification is carried out before the Validation.

Validation activity is carried out just after the Verification.

Following items are evaluated during Verification: Plans,
Requirement Specifications, Design Specifications, Code, Test
Cases etc,

Following item is evaluated during Validation: Actual product or
Software under test.

Cost of errors caught in Verification is less than errors found in
Validation.

Cost of errors caught in Validation is more than errors found in
Verification.

It is basically manually checking the of documents and files like

It is basically checking of developed program based on the

requirement specifications efc. requirement specifications documents & files.

Conclusion on difference of Verification and Validation in software testin

» Both Verification and Validation are essential and balancing to each other.
Different error filters are provided by each of them.

Both are used to finds a defect in different way, Verification is used to identify the errors in
requirement specifications & validation is used to find the defects in the implemented Software
application.

3. Relationship Between Validation & Verification

Relationship of verification & Validation

Actual Needs and :
Constraints < User Acceptance (alpha, beta test) Ig(zclz\lizrge:
é “ System < System Test System
T— Specifications| Integration
o Analysis /
N Review
% Su_bsystem Integration Test Subsystem
Design/Specs
<< Analysis /
W Review
Component < Module Test Components
Specs
< <

User review of external behavior as it is
determined or becomes visible

The Relation Of Verification And Validation Activities With Respect To Artifacts Produced In
a Software Development Project

Verification Activities Checks Consistency B/W Designs And Specifications At Adjacent
Level.

Validation Activities Attempts To Guage Whether The System Actually Satisfies Its
Intended Purpose.

Validation Activities Refer Primarily To Overall System Specification And The Final
Code.

Overall System Specification = Discrepancies B/W Actual Needs And System Specification.

» Final Code—> Discrepancies B/W Actual Product and the final
product.

» Verification includes checks for self-consistency and well-
formedness.

» Ex: we cannot judge that a program 1s “correct” except in
Reference to a specification of what 1t should do, we can
certainly determine that some programs are “Incorrect”
because they are Ill-formed.

4. Dependability Properties

Dependability Properties

1. Reliability illustrates the relation among dependability properties.

Reofubie Bt not corract Robust tat not safe
! falures canm occur rarely cotastrophic fafueos can ecour

2. Correctness ‘ !

3. Safety =

4. Robustness Retable Carrect | Robust |

Correct bet not safe / \, Sale but not correct
the specification is inadequate annoyrg falres con occur

» Correctness - Absolute Consistency With Specification.

» Reliability - Correct behaviour In Expected Use.

» Robustness 2 Behaviour Under Exceptional Conditions.

» Safety 2> Avoidance of Particular Hazards.

5. Degree of freedom

Degrees Of Freedom-Definition

» Measure of how many values can vary in a statistical calculation

» There must exist a logical proof that a program satisfies all 1ts
specifications

» Easy to obtain such proofs for simple programs though at high cost

» In general, One can’t produce a completely, logically correct proof
that a program will work in all systems & at all inputs

Undecidability Theory

< For each verification technique checking a property “S”, at least one
pathological program exists for which a correct answer will never
be obtained in finite time.

< Verification will fail at least 1in one case.

< 1.e. significant degree of inaccuracy must be accepted

Need for Logical Proof

Consider the following cases:

class A

{

static int sum(int @, inf b)

{

return a+b;
}
}
> Its an example of a java class
» Representation of int is 32 binary digits

> 2N\32 x 2N\32 = 2/N\64 = 10A21 different inputs on which A sum() has to be tested for correctness proof
> At 1 ns(10N-9 secs) per test case which will take about 30,000 years

Verification frade-off dimensions

Decidable but possibk
intractable checking of !
simple temporal properties [

Inaccuracies 1n verification technique

Pessimistic inaccuracy

>

>

The failure to accept even correct
programs

Not guaranteed to accept a program
even 1f it possess the specified
properties

Optimistic Inaccuracy
» Failure to reject incorrect programs

» Accepts programs that do not posses
specified properties

» Doesn’t detect all violations to the
specifications

Conservative analysis

» Verification technique that follows pessimistic approach

Drawbacks

* Produces large number of spurious error reports with a few accurate report
* Programmer will be unable to deal with a long list of mostly false alarms

v Since perfection is unobtainable, we must choose a technique that acts as an intermediate
between pessimistic & optimistic Inaccuracy

Introducing simple checks

Program
Int 1, sum;

Int first=1;
For(i=0;i<10,++1)
{

If (first)

{

Sum=0; first=0;

|

Sum+=I;

b

v" Rule: each variable should be initialized before its value is used in any expression
v’ Java solved this problem by making such code illegal

6. Basic Principles of Analysis & Testing

Basic Principles of Analysis & Testing

As In any engineering discipline, techniques of analysis and testing software follow few

key principles.
Different Principles are given below: [SRRPVF]

1. Sensitivity
2. Redundancy
3. Restriction
4. Partition

5. Visibility

6. Feedback

1. Better to fail every time than sometimes

2. Sensitivity requires techniques of abstraction: system behavior cannot be related to

specific circumstances .

When it uses a systematic strategy (e.g. using checklists or guidelines), code

inspection can help to find faults on regular basis.

Code Inspection

v Inspection is a peer review process operated by trained individuals who look for defects.

v'A Fagan inspection 1s a structured inspection process which includes inspection planning,

overview meeting, preparation, inspection meeting, rework, follow-up

v'Code review 1s an inspection to discover bugs in a particular piece of code.

v Code review is more informal, tool-based, and used regularly in practice than Fagan

Redundancy

v From information theory: redundancy means dependency between transmissions.
v'Solution: create guards against transmission errors .
v'In software, redundancy means consistency between intended and actual system behavior.
v'Solution: create guards for artifacts consistency, making intention explicit. [RTM]
Ex:

v'Redundancy as dependency among parts of code by using a variable:

v'a variable is defined and then used elsewhere.

v'Type declaration is a technique that makes the intention explicitly.

v'Type declaration constraints the variable use in other part of the code.

v'Compilers check the correct use of a variable against its declared type.

Restriction

Substituting principle
1. Making the problem easier or
2. Reducing the set of classes under test

Substituting principle
In complex system, verifying properties can be infeasible. Often this happens when properties are related
to specific human judgements, but not only substituting a property with one that can be easier verified
or constraining the class of programs to verify
« Separate human judgment from objective verification.
- Example: Property: Each "relevant” term in the dictionary must have a definition in the glossary.
Separate the term "relevant” giving it a standard for example.
- Example: “Race condition” interference between writing data in one process and reading or writing
related data in another process (an array accessed by different threads).
Testing the integrity of shared data 1s difficult as it is checked at run time.
Typical solution is to adhere to a protocol of serialization

Example

1]. static void questionable(){

[
[2]. int k; Compilers cannot be sure that k will be ever initialized,
3] for(imt i=0; i<10;i++){ depends on the condition

[4]. if (someCondition(i)){

[5]. k=0; Make the problem easier: Java does not allow this code

[

[

[

Partition

Divide and conquer. Typical engineering principle. There are
several ways to apply it in testing, for instance:

* Divide testing into unit, integration, subsystem and
system testing to focus on different types of faults at
different stages and at each stage take advantage of the
result of the previous stage

= Separate the program from one model of it and test a
given property on the model

Partition testing divides input into classes of
equivalent expected output.

 Then test criteria identify representatives in
classes to test a program

A general rule to identify representatives does
not exist otherwise equivalence between programs
would be possible

Statement coverage checks whether all statements
are executed at least once.

v'Setting goals and methods to achieve those goals

v'Making information accessible to the user

Feedback

Apply lessons learned from experience in process improvement and techniques
v'Iterative testing in eXtreme programming

v'Prototyping of the same

Improving the process

Why Improvement in Process?

» Commonality of projects undertaken by an organization over time.

» Developers tend to make the same kind of errors, over and over due to which same

kinds of software faults are encountered.

» Quality process can be improved by gathering, analyzing and acting on data

regarding faults and failures.

How To Do 1t?

» Gather sufficiently complete and accurate data about faults and
failures.

» Integrate data collection with other development activities.

» E.g.:- Version and configuration control, project management and
bug tracking.

» Minimize extra effort.

» Aggregate raw data on faults and failures into categories and
prioritize them.

Analysis Step

» Tracing several instances of an observed fault and failure, back to the
human error from which 1t resulted.

» Involves the reasons as to why the faults were not detected and
removed earlier.- “Root Cause Analysis”

» Counter measures involve changing the
1. Programming methods or
2. Improvements to quality assurance activities or

3. Change in management practices.

Organizational Factors

- Poor allocation of responsibilities can lead to major problems in which
pursuit of individual goals conflicts with overall project success.

- Daifferent teams for development and quality?
— separate development and quality teams 1s common 1n large organizations

— indistinguishable roles is postulated by some methodologies (extreme programming)

- Different roles for development and quality?
— Test designer is a specific role in many organizations

— Mobility of people and roles by rotating engineers over development and testing tasks
among different projects is a possible option

8. Conclusion

CONCLUSION

In a nut shell, we have seen definition of Validation,

Verification, Relationship Between Validation &
Verification, Dependability, Difference between
validation & Verification, Degree of freedom,
Undecidability Theory, Need for logical Proof, Pessimistic
& Optimistic Inaccuracies, Basic Principles of Analysis &
Testing and Improving the process

Planning and Monitoring the Process,
Documenting Analysis and Test

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

40

Planning and Monitoring

What are Planning and Monitoring?

* Planning:

— Scheduling activities (what steps? in what order?)
— Allocating resources (who will do it?)

— Devising unambiguous milestones for monitoring
* Monitoring:

Judging progress against the plan

— How are we doing? -- Red, and Green

* A good plan must have visibility -

— Ability to monitor each step, and to make objective judgments of progress

Agenda

v'Planning and Monitoring

v'Quality and Process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

42

Quality and Process

Quality Process:

Set of activities and responsibilities
— focused primarily on ensuring adequate dependability
— concerned with project schedule or with product usability

- A framework for
— selecting and arranging activities
— considering interactions and trade-offs

- Follows the overall software process in which it is embedded

— Example: waterfall software process —> “V model”: unit testing starts with
1mplementation and finishes before integration.

— Example: (Extreme Programming) XP and Agile methods —> emphasis on unit
testing and rapid iteration for acceptance testing by customers

Clean Room Process

. v'The cleanroom software engineering process 1s a software development process

intended to produce software with a certifiable level of reliability. (Software
| Reliability is the probability of failure-free software operation for a specified period of time in a
| specified environment.)

v'The cleanroom process was originally developed by Harlan Mills and several of his
colleagues including Alan Hevner at IBM. The focus of the cleanroom process is on
defect prevention, rather than defect removal.

v'The name "cleanroom" was chosen to invoke the cleanrooms used in the electronics

industry to prevent the introduction of defects during the fabrication of
semiconductors.

44

Example Process: Cleanroom

Fumctional specifications

Customer HReqguiresments

b
Specificatton
Funciton Usage

v

¥

Formal Design
Cormmeciness VWerification

Incremental

Drevelopment
Planning

Usage specifications

Statistical test cass
generathon

Soarce code

Improvement Feedback

¥

Statistical testing

Inmﬁai¢jm95

Cuality Certicaton Model

¥

BAT TF =tatistics

Test cases

Cont...

Example Process: Cleanroom

Activities and
responsibilities
focused on quality

Cusiormer He-quimnﬂen:f'ﬂr._

¥

— specification

Integrated into an
overall development

Process

Function UE-H'EFé-‘---..__P_
o

Statistical test case

generation

Improwverment Feedback

' /-
. \ > Incremental ‘,;::/ L
Functicnal specifi Development Usage specihicatons
+ \ Planmning
- Formal Design
Comectness Verification \

|

—— - !

- Y v Test cases

- Statistical testing

Imterifa i¢j mes

Quality Certification Model

v

RIT TF =statistics

46

Software Reliability Engineering Testing (SERT)

Example Process: Software Reliability
Engineering Testing (SRET)

Define "Necessary™
Reliability

‘ Development

Operational Profiles

> Frepare
for Testing
T Interpret Failure
» Execute ————___ Data
tests T
Requirements and Design and System Test and
Architecture Implementation Acceptance Test

Cont...

Software Reliability Engineering Testing
(SRET)

Define “Necessary” Activities and
Reliability

responsibilities

focused on quality
‘ Development
Operational Prog*‘ﬁ/;‘/\
| :
Prepare
Integrated into an for Testing
overall development _—
process ""-——-_______Irlterpre-t Failure
> Execute o Diatz
tests T—
Requirements and Design and System Test and
Architecture Implementation Acceptance Test

48

Extreme Programming

Example Process: Extreme Programming
(XP)

Mext version Incremental
Rewview ___————____ - Release
Refine, e F
,'F'I'iDI'i‘I‘.i.E-E\III /;__F£5ﬂ_au unit tests pass
(G =
. air
Generate User Create Unit . Fassed all Acceptance
Stories Tests *| Programming unit tests - Testing "‘.
+ unit testing

III "-__‘-H_ _f.-' {

- Failed acceptance test__ _/j,'
Create -

—i Accepitance
Tests

49

Activities and
responsibilities

Maxt wersion Incrementa

- focused on quality —— Release
Ref r
prioritize T all unit tests nass
I"“t.. & te | Create Unit Car Acceptance
e ﬁ.eﬁJ;.er ~ Teste [Programming ”_I:'.;_'?"I'ﬁ” -
—lones S + unit testing i
-"-1 e— _Failed acceptan o .
e Create _ R
= Acceptance Integrated into an
Tests overall development

pProcess

50

Ll

Overall Organization of a Quality Process

Key principle of quality planning

— The cost of detecting and repairing a fault increases as a function of time between
committing an error and detecting the resultant faults.

* therefore ...

— An efficient quality plan includes matched sets of intermediate validation and
verification activities that detect most faults within a short time of their Introduction.

* and ...

— V&V steps depend on the intermediate work products and on their anticipated
defects.

51

Verification Steps for Intermediate Artifacts

* Internal consistency checks

— Compliance with structuring rules that define “well-formed”

artifacts of that type
— A point of leverage: define syntactic and semantic rules thoroughly and precisely
enough that many common errors result in detectable violations.

- External consistency checks

— Consistency with related artifacts
— Often: conformance to a “prior” or “higher-level” specification

- Generation of correctness conjectures (Inferences)

— Correctness conjectures: lay the groundwork for external consistency checks of other

work products
— Often: motivate refinement of the current product

Strategies vs Plans

Strategy Plan
Scope Organization Project
Structure Organization structure, |Standard structure
and content |experience and policy prescribed in
based on over several projects strategy
Evolves Slowly, with Quickly, adapting to

organization and policy
changes

project needs

53

Agenda

v'Planning and Monitoring

v'Quality and Process

v'Test and Analysis Strategies and Plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

54

Test and Analysis Strategy

*Lessons of past experience

— An organizational asset built and refined over time

* Body of explicit knowledge

— More valuable than i1slands of individual competence
— Amenable (Agreeable) to improvement

— Reduces vulnerability to organizational change (e.g.,
loss of key individuals)

- Essential for

— Avoiding recurring errors

— Maintaining consistency of the process
— Increasing development efficiency

Considerations in Fitting a Strategy to an Organization

*Structure and size

— example

 Distinct quality groups in large organizations, overlapping of roles
in smaller organizations

* greater reliance on documents in large than small organizations

* Overall process
— example
* Cleanroom requires statistical testing and forbids unit testing
— fits with tight, formal specs and emphasis on reliability
« XP prescribes “test first” and pair programming
— fits with fluid specifications and rapid evolution

+ Application domain

— example

+ Safety critical domains may impose particular quality objectives and require documentation for
certification (e.g, RTCA/DO-178B standard requires MC/DC (Modified Coverage/Decision

Coverage)

Elements of a Strategy

« Common quality requirements that apply to all or most products
— unambiguous definition and measures

+ Set of documents normally produced during the quality process
— contents and relationships

» Activities prescribed by the overall process
— standard tools and practices

* Guidelines for project staffing and assignment of roles and responsibilities

57

Test and Analysis Plan

Answer the following questions:

1. What quality activities will be carried out?

2. What are the dependencies among the quality activities and between quality
and other development activities?

3. What resources are needed and how will they be allocated?

4. How will both the process and the product be monitored?

Main Elements of a Plan

1. Items and features to be verified

— Scope and target of the plan
2. Activities and resources

— Constraints imposed by resources on activities
3. Approaches to be followed

— Methods and tools

4. Criteria for evaluating results

Quality Goals

*Expressed as properties satisfied by the product

— must include metrics to be monitored during the project

— example: before entering acceptance testing, the product must pass
comprehensive system testing with no critical or severe failures

—not all details are available in the early stages of Development

* Initial plan

— Based on incomplete information
— Incrementally refined

Task Schedule

» Initially based on
— quality strategy
— past experience
* Breaks large tasks into subtasks
— refine as process advances
 Includes dependencies
— among quality activities
— between quality and development activities
* Guidelines and objectives:
— schedule activities for steady effort and continuous progress and evaluation
without delaying development activities
— Schedule activities as early as possible
— Increase process visibility (how do we know we’re on track?)

Sample Scneaule

| EEA ST

Ioff comerior A i

| leef T 1 foed T T T 1 T | I N N Y I

D s © Tam e ®

oL T o s e]

Srchibech sl e

etk camsion of oy
Py ey

af o _ . f. - -
aciTErEstraiees BEr begs

Shopparsg e ooce aed
mbepwivan (e ot Baal

Sy el mbalalive s
P

Adman Bir kogc oo aed
[g = = -]

Drchecing ot Basl |

=y e bbbl
ST st b s

Daslgn Insae=Son

i of et
L =]

et of el
S

i of ot
mie Faclises

ab -

e of Sattsalac sl
o miren g

Cods Inageellon

et of shop Fun

(== T, e]

Loe

==
(= -]

i of acimen
Loche oocte ared L

-==

sl g Tl

L s mocastaeee Basis

sl st Dl

L amsion e Fun sualseysiam
ntegmion ot

L amsign mciman B kg
mdmrywian nbegreivo bl

T mewcouSon

kd
L

Eoome nteprmain baeits

oo wrywbarm baabes

—- N - .o, W]

Schedule Risk

critical path = chain of activities that must be

completed in sequence and that have maximum overall
duration

— Schedule critical tasks and tasks that depend on critical tasks
as early as possible to

* provide schedule slack

« prevent delay in starting critical tasks

* critical dependence = task on a critical path scheduled
1mmediately after some other task on the critical path

— May occur with tasks outside the quality plan

(part of the project plan)

— Reduce critical dependences by decomposing tasks on critical
path, factoring out subtasks that can be performed earlier

Reducing the Impact of Critical Paths

Reducing the Impact of Critical Paths

PO E—— Jdamwmary Febrary Karch April Flay

CRIMECAL SCHEDLILE

Projeot stasrt 1

Amaly= snd desagn '_'
Code and integration ﬁ

Dresign @nd epe-ouhe
subsystem Dects

Dresign @nd epe-o e |
system tests

Cont...

Reducing the Impact of Critical Paths

Taik nasmes January Febiraery farmb dgpril Fhay

LHLBATED FESCURCES

Projeok shart ﬂ

Analyziz and desigm

Code and sntegratson '—
Design suboystem tests b

Ce=ign system tesis

Prodwos use=r *

choo wmeErtaticm

Exveocwute= subsy=tem
bimcis |

Ex=cute= oysthem tests -*

Prodwot delisery m

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk Planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

66

Risk Planning - Risks generic to process Management

Risks cannot be eliminated, but they can be
assessed, controlled, and monitored

* Generic management risk

— personnel

— technology

— schedule

* Quality risk

— development

— execution

— requirements

Personnel

Personnel
Example Risks Control Strategies
« Loss of a staff « Cross training to avoid over-
member dependence on individuals
« Staff member « continuous education
under-qualified for « identification of skills gaps
task early in project

« Ccompetitive compensation
and promotion policies and
rewarding work

« including training time in
project schedule

68

Development

Development

Example Risks
Poor quality
software delivered
to testing group

+« |Inadequate unit
test and analysis
before committing
to the code base

Control Strategies

Provide early warning and
feedback

Schedule inspection of design,
code and test suites

Connect development and
inspection to the reward
system

Increase training through
inspection

Require coverage or other
criteria at unit test level

69

Test Execution

Test Execution

Example Risks

« Execution costs higher
than planned

+ Scarce resources
available for testing

Control Strategies

Minimize parts that

reguire full system to be
executed

Inspect architecture to
assess and improve
testability

Increase intermediate
feedback

Invest in scaffolding

70

Evolution of the Plan

Evolution of the Plan

Second
releass

71

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

72

Process Monitoring

Process Monitoring

e |ldentify deviations from the quality plan as
early as possible and take corrective action

« Depends on a plan that is
- realistic

- well organized
- sufficiently detailed with clear, unambiguous
milestones and criteria

« A process is visible to the extent that it can be
effectively monitored

73

Typical Distribution of Faults for system builds&=
. through time

Evaluate Agagregated Data by Analogy

160
140

120
100 | Otal

80 Critical
e Severe

°0 Moderate

40 : ’ N -

20 -3 : N

1] I | | I | | :]

faults

74

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

75

Process Improvement

Monitoring and improvement within a
project or across multiple projects:
Orthogonal Defect Classification (ODC)
&Root Cause Analysis (RCA)

76

Orthogonal Defect Classification

Orthogonal Defect Classification (ODC)

e« Accurate classification schema
- for very large projects
- to distill an unmanageable amount of detailed
information
e Two main steps

- Fault classification
= wheon faults are detected
= wheon faults are fixed

- Fault analysis

77

ODC Fault Classification

ODC Fault Classification

When faults are detected
« activity executed when the fault is revealed
« trigeer that exposed the fault

« impact of the fault on the customer
When faults are fixed

« Target: entity fixed to remove the fault
« Type: type of the fault

« Source: origin of the faulty modules (in-house, library,
imported, outsourced)

+« Age of the faulty element (new, old, rewritten, re-
fixed code)

78

:
]
i
]
]
]
i
]
]
/ y
i
]
]

» Roviow and Codo Inspection

ODC activities and Triggers

ODC activities and triggers

Dosign Conformance:
Logic/ Flow

Baclkward Compatibility
Intarnal Document
Latoral Compatibility
Concurrancy

Languago Dopondoncy
Sido Effects

Rare Situation

= Structural (White Box) Test

Simple Path
Complax Path

= Functional (Black box) Test

Covorago
Variation
Soquoncing
Interaction

= Systom Test

Workload /s Stross
Rocovory / Excoption
Startup/Restart
Hardware Configuration
software Configuration
Blocked Tost

79

ODC Impact

ODC impact
« Installability « Usability
» Integrity/Security « Standards
« Performance « Reliability
» Maintenance « Accessibility
» Serviceability « Capability
« Migration « Reqguirements

» Documentation

80

ODC Fault Analysis

ODC Fault Analysis (example 1/4)

« Distribution of fault types versus activities

- Differont guality activities target difforont classes of faults
- oxample:

» algorithmic faults are targoted primarily by unit tosting.

- a high proportion of faults detected by umit testing should belong to
this class

« proportion of algorithnvic faults found during unit testing
- unusually small
- larger than normal
== unit tests may not have been well designed
» proportion of algorithnvic faults found during unit tosting unusually
largo
= integration testing may not focused strongly enough on interface

faults
81

Cont...

ODC Fault Analysis (example 2/4)

« Distribution of triggers over time during field test

- Faults corresponding to simple usage should arise early during

field tost, while faults corresponding to complex usage should
arise late.

The rate of disclosure of now faults should asymptotically
decreoaso

Unexpected distributions of triggors over time may indicate
poor system or acceptance tost

« Triggers that cormespond to simple usago rovaal many faults late in
accoeptanco tosting

= The sample may not bo reprosentative of the usor population
« Continuously growing faults during acceptance tost
== System testing may have failed

82

Cont...

ODC Fault Analysis (example 3/4)

« Age distribution over target code
- Most faults should be located in new and rewritten codo

- The proportion of faults in new and rewritten code with
rospect to base and re-fixed codo should gradually incroaso

- Difforont pattomrns
= may indicate holes in the fault tracking and removal procoss

== may indicate inadoquato tost and analysis that failed in
rovoaling faults carly

- EBExample

= incroaso of faults located in baso code aftor porting
= may indicate inadequato tosts for portability

83

Cont...

ODC Fault Analysis (example 4/4)

« Distribution of fault classes over time

- The proportion of missing code faults should
gradually decrease

- The percentage of extraneous faults may slowly
increase, because missing functionality should be
revealed with use

= increasing numbor of missing faults

= may be a symptom of instability of the product
= suddon sharp increaso in extrancous faults

= may indicate maintenance problems

84

Improving the Process

Many classes of faults that occur frequently are rooted
in process and development flaws

- examples

= Shallow architectural design that does not take into account
resource allocation can lead to resource allocation faults

= Lack of exparionce with the dovelopment environment, which
leads to misunderstandings betweon anal and programmars on
rare and exceptional cases, can result in faults in excoption
handling.
The occurrence of many such faults can be reduced by
modifying the process and environment

- oxamplos
» Rosource allocation faults resulting from shallow architectural
design can be reduced by introducing specific inspection tasks

= Faults attributable to inexperience with the dovelopment
environment can be reducod with focusod training

85

A,

Ll

Improving Current and Next Processes

» |dentifying weak aspects of a process can be
difficult

« Analysis of the fault history can help software
engineers build a feedback mechanism to track
relevant faults to their root causes

- Sometimes information can be fed back directly into
the current product development

- More often it helps software engineers improve the
development of future products

86

Root cause analysis (RCA)

« Technique for identifying and eliminating

process faults
- First developed in the nuclear power industry; used
in many fields.

« Four main steps

- What are the faults?

- When did faults occur? When, and when were they
found?

- Why did faults occur?

- How could faults be prevented?

87

What are the faults?

« |dentify a class of important faults

« Faults are categorized by
- severity = impact of the fault on the product

- Kind
« Mo fixed set of catogorios; Categories evolve and adapt

« Goal:
- Idontify tho fow most important classos of faults and romove
their causos
- Diffors from ODC: Mot trying to compare troands for difforont
classos of faults, but rather focusing on a fow important
classos

88

Fault Severity

Level Description Example

Critical The product is unusablo The fault causes the program to crash

Sovoro Some product featuros The fault inhibits importing files
cannot be used, and thero | saved with a proevious varsion of tho
is no workaround program, and there is no workaround

Modorato | Some product featuros The fault inhibits exporting in
require workarounds to Postscript format.
use, and reduce Postscript can be produced using the
officiency, reliability, or printing facility, but with loss of
convonience and usability | usability and officioncy

Cosmetic | Minor inconvenionco The fault limits the choice of colors

for customizing the eraphical
intorface, violating tho specification
but causing only minor inconvonionco

89

Pareto Distribution (80/20)

« Pareto rule (80/20)

- in many populations, a few (20%) are vital and many
(80%) are trivial

« Fault analysis
- 20% of the code is responsible for 80% of the faults

+« Faults tond to accumulate in a few modules

- identifying potentially faulty modulos can improve theo cost
effoctivencoss of fault detection

= Some classos of faults predominate

- removing tho causos of a predominant class of faults can haveo
a major impact on the quality of the process and of tho
resulting product

90

Why did faults occur?

e Core RCA step
- trace representative faults back to causes
- objective of identifying a "root™ cause

« |[terative analysis

- explain the error that led to the fault
- explain the cause of that error

- explain the cause of that cause

e Rule of thumb
"ask why six times™

91

Example of fault tracing

« Tracing the causes of faults requires experience,
judgment, and knowledge of the development process

« example

most significant class of faults = moamory loeaks
cause = forgetting to release momory in exception handlers

causeo = lack of information: "Programmers can't easily
detoermine what needs to be cleaned up in exception handlers”®
causo = dosign orror: " The resource managomoent schoemo
assumos normal flow of control™

root problem = early design problem: "Excoptional conditions
wora an afterthought dealt with late in design™

92

wt,

Ll

How could faults be prevented?

Many approaches depending on fault and process:

From lightweight process changes

- axamplo

« adding consideration of oxcoptional conditions to a dosign
inspoction checklist

To heavyweight changes:

- oxamplo

» making explicit consideration of exceptional conditions a part of
all reguireameonts analysis and design steps

Goal is not perfection, but cost-effective
Improvement

93

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

94

The Quality Team

« The quality plan must assign roles and
responsibilities to people

« assignment of responsibility occurs at

- strategic level

« tost and analysis stratogy

« structure of the organization

» external requirements (e.g., certification agency)
- tactical level

» tost and analysis plan

95

Roles and Responsibilities
at Tactical Level

balance level of effort across time
manage personal interactions

ensure sufficient accountability that quality tasks are
not easily overlooked

encourage objective judgment of quality
prevent it from being subverted by schedule pressure

foster shared commitment to quality among all team
members

develop and communicate shared knowledge and values
regarding guality

96

Alternatives in Team Structure

+« Conflicting pressures on choice of structure

- example
« autonony to ensure objoctive assossmeont

« cooporation to moot ovorall projoect objoctivos

« Different structures of roles and responsibilities
- same individuals play roles of dovelopor and tostor

- most testing responsibility assigned to a distinct group

- some responsibility assigned to a distinct organization
« Distinguish

- ovorsight and accountability for approving a task

- rasponsibility for actually porforming a task

97

Roles and responsibilities
pros and cons

« Same individuals play roles of developer and tester

- potontial conflict botwoon rolos
= oxamplo
- a developer responsible for delivering a umit on schedule

- responsible for integration testing that could reveal faults that delay
delivery

- requires countermeasures to control risks from conflict

« Roles assigned to different individuals
- Potential conflict boetweoon individuals
= oxamplo

- developer and a tester who do not share motivation to deliver a
Jguality product on schedule

- requires countaermeasures to control risks from conflict

98

Independent Testing Team

Minimize risks of conflict between roles played by the
same individual
- Examplo
« project manager with schoedule prossures cannot

- bypass guality activities or standards

- reallocate people from testing to development

- postpone gquality activities until too Late in the project
Increases risk of conflict between goals of the
independent quality team and the developers

Plan

- Examplo
« dovelopeors porform module testing

« indepondont guality team porforms integration and systom tosting

= quality team should check completenoss of module tosts

should include checks to ensure completion of quality activitios

99

Managing Communication

Testing and development teams must share the goal of
shipping a high-quality product on schedule

- testing toam

= must not be porcoived as relioving doevelopors from responsibility
for quality

= should not be completoly oblivious to scheduloe prossure
Independent guality teams reguire a mature
development process
- Teost dosignors must
= work on sufficiently precise specifications
= oxocuteo tosts in a controllable test emvironment

Versions and configurations must be well defined

Failures and faults must be suitably tracked and
monitored across versions

100

Testing within XP

« Full integration of guality activities with development
- Minimize communication and coordination overhead
- Dovelopors take full responsibility for the guality of thoir work

- Technology and application expertise for quality tasks match
expoertise available for dovelopmeont tasks

« Plan

- check that quality activities and objective assossmont arc not
easily tossod aside as doeadlines loom

- aexamplo

= XP "tost first™ togothor with pair programmving guard against somo
of the inheront risks of mixing rolos

101

Outsourcing Test and Analysis

(Wrong) motivation

- testing is less toechnically doemanding than dovelopmeoent and can
bo carried out by lower-paid and lower-skilled individuals

Why wrong

- confuses test execution (straightforward) with analysis and test
design (as demanding as design and programming)

A better motivation
- to maximize independence
» and possibly reduce cost as (only) a secondary effoct
The plan must define
- milestones and delivery for outsourced activities
- checks on the quality of delivery in both directions

102

Summary

« Planning is necessary to

- order, provision, and coordinate quality activities

« coordinate guality procoss with overall developmant
 includes allocation of roles and responsibilities

- provide unambiguous milestones for judging progress
» Process visibility is key

- ability to monitor gquality and schedule at each step

 intermediate veorification stops: bocauso cost grows with
time boetwoon orror and ropair

- monitor risks explicitly, with contingency plan ready

« Monitoring feeds process improvement
- of a single project, and across projects

103

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

104

Documenting Analysis and Test

Why Produce Quality Documentation?

« Monitor and assoss the procoss

- For intermmal use (process visibility)

- For external authorties {certification, auditing)
« Improve the process

- Maimntain a body of knowledge reused across projects

- Summanrze and present data for process
improvement

« Increaso rousability of test suites and othor
artifacts within and across projocts

105

1
:
1
i
y
:
1
i
y
y :
/ 1
/ i
L y
:
1
i
y
:
\

Major categories of documents

« Planning documents
- descrbe the orgamization of the guality process
- include organmization strateeres and project plans

« Speocification documents

- descrnbe test suites and test cases
(a5 well oz artaifacts for other qualvty tashs]

- test design specifications, test case specification,
checklists, analysis procedure specifications

* Roporting documents
- Details and summanry of analysis and test results

106

Metadata

« Documents should include metadata to facilitate
management

Approval: persons responsible for the document

History of the document

Table of Contents

Summary: relevance and possible uses of the document

Goals: purpose of the document- Who should read it, and why?

Required documents and references: refoerence to documents
and artifacts noedoed for understanding and exploiting this
document

Glossary: technical terms used in the document

107

Metadaia example: Chipmunk Document Template
Document Title
Approvals

issued by name signature date
approved by name signafure date
distribution status (internal use only, restricted, ...)
distribution list (people fo whom the document must be sent)
History
version description
--.-‘“—_._‘—_—\‘___‘___‘_h
%
e T
Metadata may be provided or I
managed by tools. For example,

version control system may
maintain version history.

108

o Chipmunk Document Template (confinued)

Table of Contents
List of secfions

Summary

Summarize the confaents of the document. The summary should clearly explain
the relevance of the document o its possible uses.

Goals of the document

Describe the purpose of this document: Who shouwld read if, and why?
Required documents and references

Provide a reference fo ofther documenis and arfifacts needed for undersianding
and explaoiting this document. Frovide a rationale for the provided references.

Glossary

Provide a glossary of terms reguired to understand this document.
Section 1

Section N

109

Naming conventions

Maming conventions help people identify

documents quickly
« A typical standard for document names include

keywords indicating

general scope of the document (project and part)
kind of document (for example, test plan)
specific document identity

version

110

Sample naming standard

Project or product (e.q.,
- W for "web presence”)

Sub-project {e.qg..
"Business logic™)

 Ttem Lype

. Identifier
; ; » Version
W B XX — YY.ZZ

example:
WEgEg 12 — 22 .04

Might specify version 4 of document 12-22
{(quality monitoring procedures for third-party
software components) of web presence project,
business logic subsystem.

111

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

112

Analysis and test strategy

Strategy document describes guality guidelines for sets
of projects

(usually for an entire company or organization)

Varies among organizations

Few key elements:
common quality requirements across products

May depend on business conditions - examples

- safety-critical software producoer may nooed to satisfy minimum
depondability requircamonts defined by a certification authority

- aemboedded software dopartmont may necd to ensure portability
across product lines

Sets out requirements on other quality documents

113

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

114

Analysis and Test Plan

Standardized structure sco next slide

Overall quality plan comprises several individual plans

- Each individual plan indicates the items to be verified through
analysis or testing

- Example: documents to be inspected, code to be analyzed or
tested, ...
May refer to the whole system or part of it
- Example: subsystem or a set of units

May not address all aspects of quality activities

- Should indicate features to be verified and excluded

« BExample: for a GUI- might deal only with functional propeorties and
not with usability (if a distinct team handles usability toesting)

- Indication of excluded features is important
+ omitted testing is a major causo of failure in large projects

115

Standard Organization of a Plan

Analysis and test itoms: items to bo tosted or analyzed
Foatures to beo tostoed: features considerad in the plan

Foatures not to be tested: Features not considored in the plan
Approach: ovorall analysis and test approach

Pass/Fail critoria: Rules that detormine the status of an artifact

Suspension and resumption criteria: Conditions to trigoor
suspension of tost and analysis activities

Risks and contingoncies: Risks forescen and contingency plans

Deliverablos: artifacts and documents that must be produced

Task and schedule: description of analysis and tost tasks
(usually includes GANTT and PERT diagrams)

Staff and responsibilities
Environmental needs: Hardware and software

116

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

117

Test Design Specification Documents

Same purpose as other software design documentation:
- Guiding further developmeont
- Proparing for maintenance

Test design specification documonts:
- describe comploto tost suites
- may be divided into
= unit, integration, system, acceptance suites (organize by granularity)
= functional, structural, performance suites (organized by objectives)
- include all the information noeoded for
= initial selection of test cases
= maintenance of the test suite over time
- identify features to be vorified (cross-reference to specification or
design document
- include description of testing procedure and pass/fail criteria
(referances to scaffolding and oracles)

- includeos (logically) a list of tost casos

118

Test case specification document

Complete test design for individual test case
Defines

- test inputs

- reguired environmental conditions

- procedures for test execution

- expected outputs

Indicates

- item to be tested (reference to design document)

Describes dependence on execution of other
test cases

Is labeled with a unique identifier

119

Agenda

v'Planning and Monitoring

v'Quality and process

v'Test and analysis strategies and plans
v'Risk planning

v'Monitoring the process

v Improving the process

v'The quality team

v'Organizing documents

v'Test strategy document

v'Analysis and test plan

v'Test design specifications documents
v'Test and analysis reports

v'Conclusion

120

Test and Analysis Reports

Report test and analysis results

Serve

- Dovolopors

» identify opon faults
» schodule fixes and revisions

- Teost dosignors

» assoss and refine their approach see chapter 20
Prioritized list of open faults: the core of the fault
handling and repair procedure

Failure reports must be

- consolidated and categorized to manage repair effort
systomatically

- proritized to properly allocate offort and handle all faults

121

Summary reports and detailed logs

« Summary reports track progress and status

- may be simple confirmation that build-and-test cycle ran
succossfully

- may provide information to guide attention to trouble spots

+ Include summary tables with
- exocutod tost suitos
- number of failuros

- breakdown of failures into

« repoated from prior test exoecution,
« now failures
« tost casos that proviously failed but now oxocuto cormoctly

+« May be prescribed by a certifying authority

122

Conclusion

In a nut shell we have seen a Planning and Monitoring, Quality and process, Test and
analysis strategies and plans, Risk planning, Monitoring the process, Improving the process, The
quality team, Organizing documents, Test strategy document, Analysis and test plan, Test design

specifications documents and Test and analysis reports

Software Testing

Automated Testing

Mamual Testing

Software Cuality Assurance

Module - 5: Integration and Component-Based
Software Testing

By

Dr.Manjunath T N
Professor

lesting

DOItwdAale

Department of ISE = BMS Institute of Technology & Mgmt

Agenda

9.

e A

Integration Testing Strategies

Testing Components and assemblies

System Testing

Acceptance Testing

Regression Testing

Usability Testing

Regression Testing Selection Techniques

Test Case prioritization and Selective Execution
Levels of Testing and Integration Testing

10.Traditional view of testing levels
11.Alternative life cycle models

12.The SATM System

13.Separating Integration and System Testing
14.A Closer look at the SATM System
15.Decomposition Based

16.Call Graph Based

17.Path Based Integrations

Department of ISE = BMS Institute of Technology & Mgmt

Integration Testing Strategies

e Bottom - up testing (test harness).
e Top - down testing (stubs).

e Modified top - down testing - test levels
independently.

e Big Bang.
e Sandwich testing.

Department of ISE = BMS Institute of Technology & Mgmt

Top-Down Integration Testing

e Main program used as a test driver and stubs are
substitutes for components directly subordinate to it.

e Subordinate stubs are replaced one at a time with real
components (following the depth-first or breadth-first
approach).

e Tests are conducted as each component is integrated.

 On completion of each set of tests and other stub is
replaced with a real component.

e Regression testing may be used to ensure that new
errors not introduced.

Department of ISE = BMS Institute of Technology & Mgmt

Bottom-Up Integration Testing

e Low level components are combined in clusters
that perform a specific software function.

e A driver (control program) is written to
coordinate test case input and output.

e The cluster Is tested.

e Drivers are removed and clusters are combined
moving upward in the program structure.

Department of ISE = BMS Institute of Technology & Mgmt

Bottom - Up Top - Down Big Bang Sandwich

Integration Early Early Early
Time to get Late Early Late Early
working
program
Drivers Yes No Yes Yes
Stub No Yes Yes Yes
Parallelism Medium Low High Medium
Test Easy Hard Easy Medium
specification
Product Easy Hard Easy Hard

control seq.

Department of ISE = BMS Institute of Technology & Mgmt

Testing Components and assemblies

Working Definition of Component

e Reusable unit of deployment and composition
o Deployed and integrated multiple times

o |ntegrated by different teams (usually)
Component producer is distinct from component user

e Characterized by an interface or contract

Describes access points, parameters, and all functional and
non-functional behavior and conditions for using the
component

No other access (e.g., source code) is usually available
o Often larger grain than objects or packages

o Example: A complete database system may be a
component

Department of ISE = BMS Institute of Technology & Mgmt

Components — Related Concepts

e Framework

Skeleton or micro-architecture of an application

May be packaged and reused as a component, with “hooks”
or “slots” in the interface contract

e Design patterns

Logical design fragments

Frameworks often implement patterns, but patterns are not
frameworks. Frameworks are concrete, patterns are
abstract

e Component-based system

A system composed primarily by assembling components,
often “Commercial off-the-shelf” (COTS) components

Usually includes application-specific “glue code”

Department of ISE = BMS Institute of Technology & Mgmt

Component Interface Contracts

e Application programming interface (API) is
distinct from implementation

o Example: DOM interface for XML is distinct from

many possible implementations, from different
sources

e Interface includes everything that must be
known to use the component

o More than just method signatures, exceptions, etc

o May include non-functional characteristics like
performance, capacity, security

o May include dependence on other components

Department of ISE = BMS Institute of Technology & Mgmt

S
B i
D=l

‘ LRSS ’

Challenges in Testing Components

e The component builder’s challenge:

o I[mpossible to know all the ways a component may
be used

o Difficult to recognize and specify all potentially
important properties and dependencies

e The component user’s challenge:
o No visibility “inside” the component

o Often difficult to judge suitability for a particular use
and context

Department of ISE = BMS Institute of Technology & Mgmt

$:
S £
B
- B
3 =

A K
ALY

=
H
H
bl ek Al
© i ®
“ergpran

T

Testing a Component: Producer View

e First: Thorough unit and subsystem testing

o |ncludes thorough functional testing based on
application program interface (API)

o Rule of thumb: Reusable component requires at
least twice the effort in design, implementation,
and testing as a subsystem constructed for a single
use (often more)

e Second: Thorough acceptance testing

o Based on scenarios of expected use

o [Includes stress and capacity testing
Find and document the limits of applicability

Department of ISE = BMS Institute of Technology & Mgmt

Testing a Component: User View

e Not primarily to find faults in the component

e Major question: Is the component suitable for
this application?
o Primary risk is not fitting the application context:
Unanticipated dependence or interactions with environment

Performance or capacity limits
Missing functionality, misunderstood API

o Risk high when using component for first time

e Reducing risk: Trial integration early

o Often worthwhile to build driver to test model
scenarios, long before actual integration

Department of ISE = BMS Institute of Technology & Mgmt

Adapting and Testing a Component™=

Application

J U W_(a\re nelt\alged tgeg)}tﬂs picture. m—

U U U L
Adaptor

AR A

L L
Component

e Applications often access components through
an adaptor, which can also be used by a test
driver

System Testing

e Recovery testing
o checks system’s ability to recover from failures
e Security testing

o verifies that system protection mechanism prevents
improper penetration or data alteration

e Stress testing

o program is checked to see how well it deals with
abnormal resource demands

e Performance testing
o tests the run-time performance of software

Acceptance Testing

* Making sure the software works correctly for
Intended user in his or her normal work
environment.

e Alpha test

o version of the complete software is tested by
customer under the supervision of the developer at
the developer’s site

e Beta test

o version of the complete software is tested by
customer at his or her own site without the developer
being present

Department of ISE = BMS Institute of Technology & Mgmt

-
Acceptance Testing Approaches

 Benchmark test.
* Pilot testing.
e Parallel testing.

16

Department of ISE = BMS Institute of Technology & Mgmt

Regression Testing

e Check for defects propagated to other
modules by changes made to existing program

o Representative sample of existing test cases is
used to exercise all software functions.

o Additional test cases focusing software functions
likely to be affected by the change.

o Tests cases that focus on the changed software
components.

Department of ISE = BMS Institute of Technology & Mgmt

Usability Testing

Usability testing is a technique used in user-centered interaction
design to evaluate a product by testing it on users. This can be seen
as an irreplaceable usability practice, since it gives direct input on
how real users use the system. This is in contrast with usability
inspection methods where experts use different methods to evaluate
a user interface without involving users.

Usability testing focuses on measuring a human-made product's
capacity to meet its intended purpose. Examples of products that
commonly benefit from usability testing are food, consumer
products, web sites or web applications, computer interfaces,
documents, and devices.

Usability testing measures the usability, or ease of use, of a specific

object or set of objects, whereas general human-computer
interaction studies attempt to formulate universal principles.

Department of ISE = BMS Institute of Technology & Mgmt

https://en.wikipedia.org/wiki/Usability_inspection

Regression Testing Selection Techniques

Regression testing is a necessary and expensive maintenance task
. performed on modified programs to ensure that the changes have not
adversely effected the unchanged code of the program.

One strategy is to rerun the entire test suit on the changed program.

This is a heavy resource and time consuming process.
A solution to this is: Regression test selection techniques: selects a

subset of test cases, thus reducing the time and resources required.

Selection Techniques:
| %

Department of ISE = BMS Institute of Technology & Mgmt

Most of the selection techniques are based on the information about the
code of the program and the modified version. Some however are based
on the program specifications.

Following are some of the code based techniques, which are used for this
study

Selection technique algorithms used for study

Safe: selects all the test cases that cover/execute the changed
methods at least once.

Minimization: selects a minimum set of test cases that execute all the
changed methods.

Random25: selects randomly 25% of the total test cases. Random50:
selects randomly 50% of the total test cases.

Random75: selects randomly 75% of the total test cases.

Department of ISE = BMS Institute of Technology & Mgmt

Test Case prioritization and Selective Execution

Regression testing activities such as test case selection and test case
prioritization are ordinarily based on the criteria which focused around
code coverage, code modifications and test execution costs. The
approach mainly based on the multiple criteria of code coverage which
performs efficient selection of test case. The method mainly aims to
maximize the coverage size by executing the test cases effectively

Department of ISE = BMS Institute of Technology & Mgmt

The goal of regression testing is to ensure that changes to the system have
not introduced errors. One approach is to rerun all the test cases in the
existing test suite and check for new faults. But rerunning the entire test suite
IS often too costly.

To make the execution of test cases more cost effective, two major
approaches are made use of. They are the Regression Test Selection (RTS)
and Regression Test Prioritization (RTP) techniques.

Many RTS and RTP techniques consider a single criterion for optimization of

test cases. But, the use of a single criterion severely limits the ability of the
resulting regression test suite to locate faults. Harman et al., induce the need
of multiple criteria and provides a list of criteria with different weights.

The two criteria for selection are code coverage and sum coverage of the
program. Code coverage assumes that there exist test cases that effectively
cover the changed area of code of the software. Sum coverage is a new
approach that maximizes the minimum sum of coverage across all software
elements.

The selected test cases are prioritized using a greedy algorithm to maximize
the minimum sum of coverage across all software elements.

Department of ISE = BMS Institute of Technology & Mgmt

Levels of Testing and Integration Testing

Traditional View of Testing Levels

The traditional model of software development is the Waterfall model,
which is drawn as a V in. In this view, information produced in one of the
development phases constitutes the basis for test case identification at
that level.

Nothing controversial here: we certainly would hope that system test
cases are somehow correlated with the requirements specification, and
that unit test cases are derived from the detailed design of the unit. Two
observations: there is a clear presumption of functional testing here, and
there is an implied “bottom-up” testing order.

Department of ISE = BMS Institute of Technology & Mgmt

Alternative Life Cycle Models

Since the early 1980s, practitioners have devised alternatives in response
to shortcomings of the traditional waterfall model of software development
Common to all of these alternatives is the shift away from the functional
decomposition to an emphasis on composition. Decomposition is a perfect
fit both to the top-down progression of the waterfall model and to the
bottom-up testing order.

One of the major weaknesses of waterfall development cited by is the
over-reliance on this whole paradigm. Functional decomposition can only
be well done when the system is completely understood, and it promotes
analysis to the near exclusion of synthesis. The result is a very long
separation between requirements specification and a completed system,
and during this interval, there is no opportunity for feedback from the
customer. Composition, on the other hand, is closer the way people work:
start with something known and understood, then add to it gradually, and
maybe remove undesired portions.

There is a very nice analogy with positive and negative sculpture. In
negative sculpture, work proceeds by removing unwanted material, as in
the mathematician’s view of sculpting Michelangelo’s David: start with a
piece of marble, and simply chip away all non-David. Positive sculpture is
often done with a medium like wax.

Department of ISE = BMS Institute of Technology & Mgmt

The central shape is approximated, and then wax is either added or
removed until the desired shape is attained. Think about the
consequences of a mistake: with negative sculpture, the whole work
must be thrown away, and restarted. With positive sculpture, the
erroneous part is simply removed and replaced. The centrality of
composition in the alternative models has a major implication for
integration testing.

Waterfall Spin-offs

There are three mainline derivatives of the waterfall model: incremental
development, evolutionary development, and the Spiral model [Boehm
88]. Each of these involves a series of increments or builds, Within a
build, the normal waterfall phases from detailed design through testing
occur, with one important difference: system testing is split into two
steps, regression and progression testing

Department of ISE = BMS Institute of Technology & Mgmt

An Object-Oriented Life Cycle Model

When software is developed with an object orientation, none of our life cycle models
fit very well. The main reasons: the object orientation is highly compositional in
nature, and there is dense interaction among the construction phases of object-
oriented analysis, object-oriented design, and object-oriented programming. We
could show this with pronounced feedback loops among waterfall phases, but the
fountain model [Henderson-Sellers 90] is a much more appropriate metaphor. In the
fountain model, the foundation is the requirements analysis of real world systems

Department of ISE = BMS Institute of Technology & Mgmt

a %
& W
] x

Formulations of the SATM System

The Simple Automatic Teller Machine (SATM) system. there are function
buttons B1, B2, and B3, a digit keypad with a cancel key, slots for printer
receipts and ATM cards, and doors for deposits and cash withdrawals. The
SATM system is described here in two ways: with a structured analysis
approach, and with an object-oriented approach. These descriptions are not
complete, but they contain detail sufficient to illustrate the testing techniques
under discussion.

SATM with Structured Analysis

The structured analysis approach to requirements specification is the most widely
used method in the world. It enjoys extensive CASE tool support as well as
commercial training, and is described in numerous texts. The technique is based
on three complementary models: function, data, and control. Here we use data
flow diagrams for the functional models, entity/relationship models for data, and
finite state machine models for the control aspect of the SATM system. The
functional and data models were drawn with the Deft CASE tool from Sybase Inc.
That tool identifies external devices (such as the terminal doors) with lower case
letters, and elements of the functional decomposition with numbers (such as 1.5
for the Validate Card function).

Department of ISE = BMS Institute of Technology & Mgmt

The open and filled arrowheads on flow arrows signify whether the flow
item is simple or compound. The portions of the SATM system shown

here pertain generally to the personal identification number (PIN)

verification portion of the system.

|" Screen 1 K

Welcome.

Please Insert your
ATM card for Service

L%

-

Screen 2

Enter your Personal
Identification Number

I_ Press Cancel if Error

|'/_ Screen 4 '-,

Invalid identification.
Your card will be
retained. Please call

the bank.

vy

I"f SCreem o

Select transaction type:
balance
deposit

withdrawal

\. Press Cancel if Error

4 Screen 7 ™

Enter amount.
Withdrawals must be
in increments of S10.

' Screen 8 -‘“\.

Insufficient funds.
Please enter a new
amount,

.'"F Screen 3

Your Personal
Identification Number
is incorrect. Please try

again.
e

¢ Screent W

Select account Ty

checking
SaVings

_ Press Cancel if El’l’ﬂl’f,l

¢ Screen 9 _“"n

Machine cannot dispense
that amount.

Lli"h-:mi try again. JJ

'..\‘_Pms Cancel if Error J '._Frr.'ss Caneel if Error J
f Sereen 10 M I'/- Screen 11 N\ Screen 12
Tempaorarily unable to Your balance is being Temporarily unable to
process withdrawals updated. Please take cash process deposits.
Another transaction? fream dispenser. Another transaction?
ves Ves
. A vy no
Screen 13 Screen 14 Screen 15
Please put envelope into Your new balance is Please take your
dt'PDﬂt glot, Your balance p,rmted_ O your receipl, I.'El'_‘E‘ipt and ATM
will be updated. Another transaction? card, Thank you,
yes
o

Department of ISE B i

28

The Deft CASE tool distinguishes between simple and

. N
flows, where compound flows may be decomposed into other flows,
which may themselves be compound. The graphic appearance of this
choice is that simple flows have filled arrowheads, while compound
flows have open arrowheads. As an example, the compound flow
“screen” has the following decomposition

//m\

Receipts ()
to the ID Card (—)
Simple @
Automatic Teller . @
Machine @ @
Plsse Insrt. your @ (& (®| The SATM Terminal
card for service) .
- &) ®
®
(Cash Dispensing Door) 'el'erminal keystroke e .
S een .
(Deposit Envelope Door) /J -& o T;::;Zd
d sts:i?ttxs L) door p
Terminal — Simple iiiniec 1 ¢
Slots <l ATM 1 Termi
slot Syst‘em cDr:::l
. co d
Context Diagram of the SATM - et
Syste m Expected PIN PAN

Central
Bank

Departmentof ISE B

The Structured Analysis approach
models shown here are not complete
but they contain sufficient details to
illustrate the testing techniques.

The Structured analysis approach to
requirements specifications is still
widely used.

It Enjoys extensive CASE tool support.

The Techniques used are based on
three complementary models: function,
data and control.

Here we use dataflow diagrams for

functional model, the entity relationship
model for data and finite state machine
models for the control aspects of SATM

Department of ISE

BMS Institute of Technology & Mgmt

:I' ; " Sl
o Command

Terminal
Slots

:: ; Shot
o Status

Terrmimal
Slots

Device
Sense ang
Control

Dievice
{..;Elll'lmun,dL

D'.H'I' n t
Status ‘:w“'“
Termimal St

Dinors

Door
Commaned
Termimnal
Doors

@4— PAN

Central
Bank

Expected
PIN

Central
Bank

@— Screen

Termina)
SCIEEn

Central
Bank
Commun-

ication

Termimal
Sense and
Contral

Eeystroke

Terminal
Keys

Level-1 Dataflow Diagram of
the SATM System

greerﬁ wrong PIN
,....eeﬂ.ﬂl PIN failEd card i . Custar
z\,rEEHS select trans i;peretalneci - l — " N
;creeﬂﬁ select account type CustomerlD
screen’ enter amount s
screens insufficient fynds
gcreen? cannot dispense that amount o I.n
screenl0 cannot process withdrawals Lo
screenll take your cash B T
screenll cannot process deposits — Unes Aecount
screenl3 put dep envelop in slet TramsactionType —
screenl4 another transaction? Imf‘-" ::'PLMM.
screenlS Thanks; take card and receipt ATMmumber i
[e
tTrpe
I.i .
Termiral
The Different Screens are shown along with .
CishOnHand
E-R diagram of the major data structure in t“ﬁe SATM ;
-Customer
~Accounts E-R Model of the SATM
-Terminals S- t odetorthe
) stem
-Transactions. y

Department of ISE = BMS Institute of Technology & Mgmt

The Upper level finite state
machine which divides the
system into states that
correspond to stages of
customer usage.

Other Choices are possible
for instance, we might
choose states to be screens
displayed.

Finite state machines can be
hierarchically decomposed
in much the same way as
dataflow diagrams can.

Department of ISE

BMS Institute of Technology & Mgmt

Cance| g
PIN Faileg

Transaction
Selection

Upper Level SATM Finite
State Machine

The Decomposition of the Await PIN
state. Here the state transitions are
caused either by events at the ATM
terminal or by data conditions.

When a transition occurs a
corresponding action may also occur.

We choose to use screen displays as
such actions, this choice will prove to
be very handy when we develop
system-level test cases.

The function, data and control
models are the basis for design
activities in the waterfall model

Department of ISE = BMS Institute of Technology & Mgmt

/ Display Screen 51

Incorrect Py

Wwirong Card
g DL:pln'r- Screen 54

Legitimate Card Display Screen 51,
Display Screen 52 Eject Card

Awalti
l-'ir.etna Incorrect PIN
PIM Tt Display Screen 53

AwRiting™y 1, orrect PIN
Ew Display Screen 53
Correct PIN
IHs Screen 55
play Correct PIIN
Display Screen 55 i
Correct PIN

Await Display Screen 55
Transaction
Choice

PIN Entry finite State
Machine

HHE PR R R R

Ll el e Sl e T T T

*® * .

*

The Pseudocode shown here is for SATM system and it is decomposed
into tree structure for different functionality

Department of ISE = BMS Institute of Technology & Mgmt

L

e e b L L B B BRI BI I e e e e

s b B ol el e LW W W LB

[X

B OB OBI OB B B

SATM System

pevice Sense & pontrol

poor Sense & rontrol

1 Get DooOr status

-2 Control DooT

3 pispense Cash

glot Sense & rentrol
WatchCardsSlot

: et Deposit Slot Status
3 fantrol Card Roller

3 control Envelope Roller
B Read Card Btrip

Central Bank Comm.

Get PIN for PAN

Gaet Account Status

Post Daily Transactions
Terminal Sense & Control
Screen Driver

Key Sensor

Manage Session

Validate Card

Validate PIN

.1 GetPIN
Close Session

.1 New Transaction Reguest

Frint Receipt

Z o

anage Transaction

Get Account Type
Report Balance
process Deposit
Process Withdrawal

.

*

o Wb

Post Transaction Local

Cet Transaction Type

Central Bank

Communication

Validate
Card

Get Digit

A Decomposition tree for

the SATM System

1 ¢ Name
/’,’m"”—_ Lind
2y

it N SATAA System
1 ice Sense & Control oL
: 11 3;:,, cense & Control
D 1.1.1 et Door Status s
i 2 : ::: Control Door
: ! 1.1-r 3 pispense Cash
4 : ;. 5lot Sense & Control
. 1:.;1 wiatchCardslol
: 4 :']','2 Get Deposit Slot Status
{ g =5 Control Card Roller
- 1.1.23
| i 1124 Control Envelope Roller
g 1125 Read Card Strip
10 12 Central Bank Comm.
1 121 Get PIM for PAM
12 142 Get Account Status
1 123 Past Daily Transactions
B 1.3 Terminal 5ense & Control
H 131 Screen Driver
15 132 Key Sensor
c 14 Manage Session
16 141 Validate Card
v 142 Validate PIN
B 4 GetPIN
i A3 Clase Session
;: ::j; NE“' Transaction Request
4 1;1 13 T e
n 1'.4I4" Post Transaction Local
= 1441 :amgq """f“"““’“
¥ 1442 G:: Transaction Type
5 1443 Account Type
. PR Report Balance . N
7 aas Process Depasit SATM functional decomposition tree
il Procesg Withdrawal

SATM Units and Abbreviated Names

Department of ISE = BMS Institute of Technology & Mgmt

35

\
The decomposition tree is the basis of integration testing. It is important
to remember that such a decomposition is primarily a packaging
partition of the system.

As software design moves into more detail, the added information. The
functional decomposition tree into a unit calling graph.

The Unit calling graph is the directed graph in which nodes are program
units and edges runs from node A to node B.

Drawing a call graphs do not scale up well.

Both the drawings and the adjacency matrix provide insights to the
tester.

Node with a higher degree will be important to integration testing and

paths from the main program(node-1) to the sink nodes can be used to
identify contents of builds for an incremental development.

Department of ISE = BMS Institute of Technology & Mgmt

L N B | A} N % ® W
2 |
1 |
1 [
5 |
B [
7 |
8 |
a [
10 ||
] |
i2 [
13 |
T4 ||
15 |
6 X X X
17 X X || ®
18 % | % i
0 X II X
20
21
n A
73 X X
4 L -
5 X
Th % R % % X | X
g . i, o * " 4 X =

Adjacency Matrix for the SATM Call Graph

Department of ISE = BMS Institute of Technology & Mgmt 37

SATM Call graph is shown in the
graph. Some of the hierarchy is

obscured to reduce the confusion
in the drawing.

0 Q]] O

SATM Call Graph

Department of ISE

BMS Institute of Technology & Mgmt

QOOCO0OO0O0OODYD
Second Level Subtswe (Sessicas 12-15)

Top-Down Integration

Department of ISE BMS Institute of Technology & Mgmt 39

At the uppermost level, we would have stubs for the four
components in the first level decomposition.

There would be four integration sessions, in each one component
would be actual code and other three would be stubs.

Top-down integration follows a breadth-first traversal of the functional
decomposition tree.

Department of ISE = BMS Institute of Technology & Mgmt

~Soo00op00 O 0 O Uf
Bectom Subtree (Sessions 13-17)

Bottom Up Integration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

41

Department of ISE = BMS Institute of Technology & Mgmt

Bottom-up integration is a “mirror image” to the top-down order,
with the difference that stubs are replaced by driver modules that
emulate units at the next level up in the tree.

In bottom-up integration, we start with the leaves of the
decomposition tree (units like ControlDoor and DispenseCash),
and test them with specially coded drivers.

There is probably less throw-away code in drivers than there is in
stubs. Recall we had one stub for each child node in the
decomposition tree.

Most systems have a fairly high fan-out near at the leaves, so in
the bottom-up integration order, we won’'t have as many drivers.
This is partially offset by the fact that the driver modules will be
more complicated

Department of ISE = BMS Institute of Technology & Mgmt

Bottom-up Integration

43

Department of ISE = BMS Institute of Technology & Mgmt

The idea behind pair-wise integration is to eliminate the stub/driver
development effort. Rather than develop tubs and/or drivers, why
not use the actual code? At first, this sounds like big bang
integration, but we restrict a session to just a pair of units in the call
graph. The end result is that we have one integration test session
for each edge in the call graph

Pairwise Integration

Department of ISE = BMS Institute of Technology & Mgmt

We can let the mathematics carry us still further by borrowing the notion of a :
“neighborhood” from topology. (This isn’t too much of a stretch - graph theory"hmﬁ‘
IS a branch of topology.) We (informally) define the neighborhood of a node in

a graph to be the set of nodes that are one edge away from the given node.

In a directed graph, this means all the immediate predecessor nodes and all

the immediate successor nodes (notice that these correspond to the set of

stubs and drivers of the node).

Neighbourhoods Integration

Department of ISE = BMS Institute of Technology & Mgmt

The eleven neighborhoods for the SATM example (based on the
call graph in Figure 4.2) are given in Table 3.

—— e ————
Node Predecessors Successors

16 1 9,10, 12

17 1 11,14, 18

18 17 14,15

19 1 14, 15

23 X2 14,15

24 22 14,15

26 22 14,15, 6,8, 2, 3

27 22 14,15,2,3,4,13

25 22 15

22 1 23, 24, 26, 27, 25

1 n/a 57,2 21,16,17,19, 22

Department of ISE = BMS Institute of Technology & Mgmt

CAAHTTTY Uit LU Uie valicvu Uiy, vviiclr v oUVlTiv Utlivl palll Ul oUUl Lo otatuldliviito 1o

traversed. We cleverly ignored this situation in Part Ill, because this is a
better place to address the question. There are two possibilities: abandon
the singleentry, single exit precept and treat such calls as an exit followed by
an entry, or “suppress” the call statement because control eventually returns
to the calling unit anyway. The suppression choice works well for unit
testing, but it is antithetical to integration testing.

MM-Path across three units

Department of ISE = BMS Institute of Technology & Mgmt

The first guideline for MM-Paths: points of quiescence are “naturat™=
endpoints for an MM-Path. Our second guideline also serves to
distinguish integration from system testing.

Our second guideline: atomic system functions are an upper limit for MM-
Paths: we don’t want MMPaths to cross ASF boundaries. This means
that ASFs represent the seam between integration and system testing.
They are the largest item to be tested by integration testing, and the
smallest item for system testing. We can test an ASF at both levels.
Again, the digit entry ASF is a good example.

During system testing, the port input event is a physical key press that is
detected by KeySensor and sent to GetPIN as a string variable. (Notice
that KeySensor performs the physical to logical transition.) GetPIN
determines whether a digit key or the cancel key was pressed, and
responds accordingly.

(Notice that button presses are ignored.) The ASF terminates with either
screen 2 or 4 being displayed. Rather than require system keystrokes
and visible screen displays, we could use a driver to provide these, and
test the digit entry ASF via integration testing. We can see this using our
continuing example.

Department of ISE = BMS Institute of Technology & Mgmt

@)
D
D

@

MM-Path graph derived from
previous MM-Path

Department of ISE = BMS Institute of Technology & Mgmt

Conclusion

In a nut shell we have seen a brief Integration Testing Strategies,
Testing Components and assemblies, System Testing, Acceptance
Testing, Regression Testing, Usability Testing, Regression Testing
Selection Techniques, Test Case prioritization and Selective Execution,
Levels of Testing and Integration Testing, Traditional view of testing
levels, Alternative life cycle models, The SATM System, Separating
Integration and System Testing, A Closer look at the SATM System,
Decomposition Based, Call Graph Based and Path Based Integrations.

Department of ISE = BMS Institute of Technology & Mgmt

