
BMS Institute of Technology and MgmtDepartment of ISE

Software Testing

Module-1 : Basics of Software Testing

By,

Dr. Manjunath T. N.

Professor

Dept. of Information Science & Engg.

BMS Institute of Technology, Bengaluru.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Definition

➢Testing is the process of executing a program
with the intent of finding errors

➢Reasons for testing

➢To discover problems

➢To make judgment about quality or acceptability

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Definition

➢Testing is obviously concerned with

✓Errors

✓Faults

✓ Failures

✓Incidents

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Definition

• Errors
✓Synonym mistake

✓Mistakes while coding-bugs

✓Tend to propagate

• Fault
✓ Synonym defect

✓ Result/representation of error

✓ Modes of expression
▪ Dataflow diagram

▪ Hierarchy charts

▪ Narrative text

▪ Source code

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Definition

✓Fault of commission-occurs when we enter something into a

representation that is incorrect

✓Fault of omission-occurs when we fail to enter correct

information.

• Failure

✓Occurs when fault executes

✓Applicable to only faults of omission

• Incident

✓ Symptom associated with a failure

✓ Alerts user to occurrence of a failure

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Definition

• Test

the act of exercising software with test cases with an
objective of

✓Finding failure

✓Demonstrate correct execution

• Test case
✓ Has set of inputs and expected outputs.

✓ Has Identity associated with program behavior

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

A Testing Life Cycle

Requirement

Specs

Design

Coding

Testing

Fault

Resolution

Fault

Isolation

Fault

Classification

Error

Fault

Fault

Fault

Error

Error

incident

Fix

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

A Testing Life Cycle

• Errors-faults-failures propagates in development
phases.

• Tester summarises life cycle as 3 phases
✓Putting bugs IN

✓Testing phase –finding bugs

✓Getting bugs OUT

• Testing occupies central position & subdivided into
✓ Test planning

✓ Test case development

✓ Running test cases

✓ Evaluating test results.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Test cases

• Determine test cases for the item to be tested.

• Have identity- reason for being

• Inputs Preconditions

Actual inputs

• Expected Actual outputs

outputs Post conditions

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Test cases

• Act of testing entails

✓ Establishing necessary preconditions

✓Providing the test case inputs

✓Observing the outputs

✓Comparing with the expected outputs

✓ Ensuring the existence of expected preconditions

• Records the execution history of test cases

✓When & by whom it was run

✓Pass/fail results

✓Version of software

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Test cases

Typical test case information

Test case ID

Purpose

Preconditions

Inputs

Expected outputs

Post conditions

Execution History

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Insight from Venn diagram

• Two views
✓ Structural view - what it is

✓Behavioral view - what it does – testing

▪ Difficulty of tester -Base document is only for developers

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Relationship – program behaviors

Program Behaviors

Specified

(expected)

Behavior

Programmed

(observed)

BehaviorFault

Of

Omission

Fault

Of

Commission

Correct portion

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Relationship – Testing wrt Behavior

Program Behaviors

Specified

(expected)

Behavior

Programmed

(observed)

Behavior

Test Cases

(Verified behavior)

8
7

5 6

1

4 3

2

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Cont…

• 2, 5

– Specified behavior that are not tested

• 1, 4

– Specified behavior that are tested

• 2, 6

– Programmed behavior that are not tested

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Cont…

• 1, 3

– Programmed behavior that are tested

• 3, 7

– Test cases corresponding to unspecified behavior

• 4, 7

– Test cases corresponding to un-programmed
behaviors

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Inferences

• If there are specified behaviors for which
there are no test cases, the testing is
incomplete

• If there are test cases that correspond to
unspecified behaviors
– Either such test cases are unwarranted

– Specification is deficient

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Test methodologies

• Functional (Black box) testing

• Structural (White box) testing

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Functional Testing/Black box
testing

• Program-a function that maps values from its input
domain to values in its output range

• Content/implementation is not known

• Function is understood completely in terms of its
inputs & outputs

• For test case identification only specification of the
software is used

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Advantages & Disadvantages of
Functional Testing

• Advantages

✓ Independent of software implementation

✓ Test case development can occur in parallel

• Disadvantage

✓Redundancy among test cases.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Functional Test cases

Specified Programmed

Test

Cases

Functional methods are based on the specified behaviors only

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structural /white box /clear box
testing

• Implementation is known and used to identify test
cases

• Concept of linear graph theory is required to
understand

• Test coverage metrics –provides way to state the
extent to which the software item can be tested.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structural Test cases

Specified Programmed

Test

Cases

Structural methods are based on the programmed behaviors only

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Functional verses structural

• Redundancy and gaps – problems of functional testing

• Functional test cases executed in combination with
structural test coverage methods both problems can be
recognized and solved.

functional Structural

Program Behaviors

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Errors and fault taxonomies

• Process - how we do something

• Product - end result of a process

• Software quality assurance

✓tries to improve product by improving process

✓Concerned with reducing errors in development
phases

✓Testing concerned with discovering faults in a
product-product oriented.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Classification of faults

• Based on Anomaly occurrence

✓One time only

✓Intermittent

✓Recurring/repeatable

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Based on severity

Mild Misspelled word

Moderate Misleading or redundant information

Disturbing Some transactions not processed

Serious Lose a transaction

Very serious Incorrect transaction execution

Extreme Frequent ”very serious” errors

Intolerable Database corruption

Catastrophic System shutdown

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

✓Input / output faults

➢correct i/p not accepted

➢wrong format

➢ wrong results

✓Logic faults

➢missing condition

➢missing cases

➢Incorrect operand/operation

✓Computational faults

➢incorrect algorithms

➢ missing computations

➢Parenthesis error

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

✓Interface faults

➢I/o timing

➢Incorrect i/p handling

➢Call to wrong procedure

✓Data faults

➢Incorrect initialisation

➢Incorrect storage/access

➢Wrong flag/index value

➢Incorrect type

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Levels of testing

coding

Preliminary

design

Integration

testing

Detailed

design

Unit

testing

Requirement

specification
System

testing
……………………………..........

…………………….........

………....

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Generalized pseudo code

• Provides “language neutral” way

Program component

• Levels of constructs

Unit component

traditional object oriented

components components

Procedure & functions Class & object

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Triangle Problem

Problem statement

Simple version: The triangle program accepts three integers, a, b,
and c, as input. These are taken to be sides of a triangle.

The output of the program is the type of triangle determined by
the three sides: Equilateral

Isosceles

Scalene

Not A Triangle.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Triangle Problem

Improved version: “Simple version” plus better
definition of inputs:

The integers a, b, and c must satisfy the following conditions:
✓ c1. 1 ≤ a ≤ 200

✓ c2. 1 ≤ b ≤ 200

✓ c3. 1 ≤ c ≤ 200

✓ c4. a < b + c

✓ c5. b < a + c

✓ c6. c < a + b

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Triangle Problem

Final Version: “Improved version” plus better
definition of outputs:

✓ If an input value fails any of conditions c1, c2, or c3, the program
notes this with an output message “Value of b is not in the range
of permitted values.”

for example,

If values of a, b, and c satisfy conditions c1, c2, and c3, one of
four mutually exclusive outputs is given:

✓ If all three sides are equal, the program output is Equilateral.

✓ If exactly one pair of sides is equal, the program output is Isosceles.

✓ If no pair of sides is equal, the program output is Scalene.

✓ If any of conditions c4, c5, and c6 is not met, the program output is Not
a Triangle.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Triangle Problem

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The NextDate function

• NextDate is a function of three variables:
✓month

✓Date

✓Year

➢ returns the date of the day after the input date

• The month, date, and year variables have integer values subject to these
conditions:

✓ c1. 1 ≤ month ≤12

✓ c2. 1 ≤ day ≤ 31

✓ c3. 1812 ≤ year ≤ 2012

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The NextDate function
• If any of conditions outputs variable has an

c1, c2, or c3 fails out-of-range value

• If i/p value is invalid outputs invalid input date

• Two source of complexity
✓Complexity of input domain

✓Rule that determines when a year is a leap year

• Leap year problem is solved by Gregorian calendar

“ Year is leap year if it is divisible by 4 i.e. only for non-
century year “

Century year is a leap year if it is divisible by 400. Thus 1600,
2000, 2004 and 2008 are leap years, but 1700, 1900 and

2100 are not”

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Commission problem

A rifle salesperson in the former Arizona Territory sold rifle locks, stocks,
and barrels made by a gunsmith in Missouri.

✓ Locks cost $45

✓ stocks cost $30

✓ barrels cost $25.

The salesperson had to sell at least one complete rifle per month, and
production limits were such that the most the salesperson could sell in a
month was

✓70 locks

✓80 stocks

✓90 barrels.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Commission problem

After each town visit, the salesperson sent a telegram to the Missouri
gunsmith with the number of locks, stocks, and barrels sold in that town. At
the end of a month, the salesperson sent a very short telegram showing –1
locks sold.

salesperson’s commission is computed as follows:

✓ 10% on sales up to (and including) $1000

✓ 15% on the next $800

✓ 20% on any sales in excess of $1800.

The commission program produced a monthly sales report that gave the total
number of locks, stocks, and barrels sold, the salesperson’s total dollar sales,
and, finally, the commission.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Commission problem

• This problem separates into three distinct
pieces

✓Input data portion-deals with input data
validation

✓Sales calculation

✓Commission calculation portion

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The SATM System

Problem statement
• The SATM(Simplified Automated Teller Machine) system

communicates with bank customers via the 15 screens.

• Customers can select any of three transaction types

✓Deposits

✓Withdrawals

✓Balance enquires

• Transactions can be done on two types of account

✓Checking

✓savings

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The SATM System

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Currency Converter

• Event driven program

• Code associated with a graphical user
interface(GUI)

• Works on the basis of completing label

• Users can click on
» Compute button

» Clear button

» Quit button

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Currency Converter

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Saturn windshield wiper controller

• Controlled by lever with a dial

• Leaver positions

✓OFF

✓INT(intermittent)

✓LOW

✓HIGH

• Dial positions (1,2,3) indicates three intermittent speeds & is
relevant only when lever is in INT position.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Saturn windshield wiper controller

• Decision table showing windshield wiper speeds(in wipes per
minute) for the lever & dial position

Wiper speeds in wipes
per minute

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

My Details

Dr. Manjunath T. N.

Professor

Dept.of.ISE

BMSIT, Bengaluru
Email: manju.tn@bmsit.in

manju.tn@gmail.com

Mobile:+91-9900130748

3/9/2020

BMS Institute of Technology and Mgmt Department of ISE

Software Testing

Module-2 : BVA,ECP & DTM

By,

Dr. Manjunath T. N.

Professor

Dept. of Information Science & Engg.

BMS Institute of Technology, Bengaluru.

BMS Institute of Technology and Mgmt Department of ISE

Functional Testing

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Boundary value Analysis

a b

c

d

x2

x1

Input Domain of F(x 1, x2)

F –-function of two variables X1 & X2

When function is implemented as a

program both X1 & X2 have some

boundaries

a≤x1≤b

c≤x2≤d
[a,b] and [c,d] -range of x1 & x2

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Boundary value Analysis

• It is a software testing technique in which tests are

designed to include representative of boundary values

• Used to identify errors at boundaries rather than

finding those exits in center of input domain

• Range checking—focuses on the boundary of the

input space to identify test cases

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Boundary value Analysis

• In general application of Boundary Value

Analysis can be done in a uniform manner

• The basic form of implementation is to

maintain all but one of the variables at their

nominal(normal or average) values and

allowing the remaining variable to take on its

extreme values

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Boundary value analysis (cont…)

The basic idea is to use input variable values at their

BMS Institute of Technology and Mgmt Department of ISE

Input Boundary value testing

BMS Institute of Technology and Mgmt Department of ISE

Input Boundary value testing

BMS Institute of Technology and Mgmt Department of ISE

Input Boundary value testing

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Boundary value testing

Based on critical assumptions known as single fault

assumption in reliability theory

• failures are only rarely the result of the simultaneous

occurrence of two (or more) faults.

• Thus boundary value analysis test cases are obtained

by holding the values of all but one variable at their

nominal values & letting that variable assume its

extreme values.

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Generalizing Boundary value Analysis

• The basic boundary value analysis technique

can be generalized in two ways:

Number of variables

Kinds of ranges

• Generalizing number of variables is easy

• Generalizing ranges depends on the nature of the

variables themselves.

 Boundary value analysis yields 4n+1 unique test cases

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Limitations of boundary value

analysis

• Works when the program to be tested is a

function of several independent variable that

represent bounded physical quantities.

• Boundary value analysis test cases are

rudimentary

• Physical quantity criterion

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Robustness testing

• Extension of boundary value analysis

• Shows what happens when extreme are

exceeded with

Value slightly greater than the maximum(max+)

Value slightly less than the minimum(min-)

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Robustness testing

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Robustness testing

Forces attention on exception handling

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Worst case testing

• Depends on single fault assumption of

reliability theory

What happens when more than one variable has

an extreme value –WORST CASE ANALYSIS

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Generation of worst-case

test cases

• Start with 5 element set

 {min,min+,nom,max-,max}

• Take Cartesian product of sets

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Generation of worst-case test cases

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

• boundary value analysis test cases are proper

subset of worst-case test cases

• Effort is more– worst case testing for a

function of n variables generates 5𝑛 test cases

as opposed to 4n+1 test cases for boundary

value analysis.

Relationship b/w boundary value &

worst-case analysis

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Robustness worst case testing

• Involves the Cartesian product of seven

elements sets results in 7𝑛 test cases

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Special value testing

• Adhoc testing

• Most widely practiced form of function testing

• Most intuitive and least uniform

• Occurs when a tester uses

• domain knowledge

• Experience with similar programs

• Information about ‘’’soft spots’’ to device test cases

• Best engineering technique is used than guidelines

• Depends on ability of the tester

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

EXAMPLES

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

EXAMPLES

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

EXAMPLES

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

EXAMPLES

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Random testing

Rather than always choose the min, min+,

nom,max+, max values of a bounded variables

use a random number generator to pick test case

values.

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

How many Random test cases are

sufficient ?

• Structural test average metrics gives answer

• X= Int ((b-a+1)* Rnd +a)

fun Int--returns the integer part of a floating

point number

fun Rnd– generates random numbers in the

interval[0,1]

• Program keeps generating random test cases

until at least one of each output occur.

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Random test cases for Triangle

problem

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Equivalence Class Testing

Equivalence

relation

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Equivalence Class Testing

• Function F of two variable X1 & X2 ,when
implemented as a program, the i/p variables
X1 & X2 will have the following boundaries
and intervals within the boundaries

a≤x1≤d, with intervals [a,b),[b,c),[c,d]

e≤x2≤g, with intervals [e,f),[f,g]

• Main purpose of Equivalence Class are:

• To have a sense of complete testing

• To avoid redundancy

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Weak Normal Equivalence Class Testing

 Accomplished by using

one variable from each

equivalence class in a

test cases

 These three test cases

use one value from

each equivalence class

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strong Normal Equivalence Class

Testing

 Based on multiple fault

assumption

 We need test cases from

each element of the

Cartesian product of the

equivalence class

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strong Normal Equivalence Class

Testing

• The Cartesian product guarantees that we have

a notation of completeness in 2 sense:

We cover all the equivalence classes

We have one of each possible combination

of inputs.

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Weak Robust Equivalence Class

Testing

• Robust part — Comes from

consideration of invalid

values

• Weak part — refers to the

single fault assumption

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Weak Robust Equivalence Class

Testing

Two problems occur

• Specification does not define what expected

output for an invalid input should be. Thus

testers spend a lot of time defining expected

outputs for these cases.

• Strongly typed languages eliminate the need

for the consideration of invalid inputs.

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strong Robust Equivalence Class

Testing

The robust part -- comes

from consideration

Of invalid values

Strong part -- refers to the

multiple fault assumption

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Weak Equivalence class Testing

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Strong Equivalence class Testing

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Equivalence Class Test Cases for

triangle problem

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Alternately

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Equivalence Class Test Cases for NextDate function

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision tables

• Used to represent and analyse complex

logical relationships

• Ideal for describing situations in which a

number of combinations of actions are

taken under varying sets of conditions

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table Testing (Cont.…)

• A decision table has following four portions

Stub portion – left most column

Entry portion– right Condition stub

Condition portion– C’s condition entries

Action portion– a’s Action stub

 Action entries

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table Testing (Cont.…)

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table Testing (Cont.…)

• Don’t care entry has 2 major interpretation

The condition is irrelevant

The condition doesn’t apply

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table Testing (Cont.…)

• LIMITED ENTRY DISION TABLES

Decision table in which all the conditions are

binary

• EXTENDED ENTRY DECISION TABLE

If conditions are allowed to have several

values

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table Testing Technique

• To identify test cases with decision tables

interpret

Conditions as inputs(refers equivalence classes

of inputs)

Actions as outputs(refers functional processing

portions of the item tested)

Rules as Test cases

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table for triangle problem

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Refined Decision Table for triangle
problem

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table with mutually
Exclusive Conditions

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

RULE COUNTS

• When don’t care entries really indicate that the

conditions are irrelevant, rule counts are

developed as follows:

Rule in which no don’t care entries occur, count

as one rule

Each don’t care entry in a rule doubles rule

count

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Decision Table with rule count

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Rule counts for a decision table with
mutually Exclusive conditions

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

EXPANDED VERSION

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

Action entries in 9 -----identical to 1-4

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

An inconsistent Decision Table

 Rule 9 -----identical to 1-4 but actions are different

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

An inconsistent Decision Table

 Observations

Rule 1-4 and 9 are inconsistent– Action

sets are different

Decision table is non deterministic-no

way to decide which rule to apply

Testers should take care when don’t care entries are used

in decision table.

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

 Decision Table for triangle problem

66

Introduction:

Let’s count marbles ...

a lot of marbles  Suppose we have a big

bowl of marbles. How can

we estimate how many?

◦ I don’t want to count every

marble individually

◦ I have a bag of 100 other

marbles of the same size, but

a different color

◦ What if I mix them?

67

Estimating marbles

 I mix 100 black marbles

into the bowl

◦ Stir well ...

 I draw out 100 marbles at

random

 20 of them are black

 How many marbles were

in the bowl to begin with?

68

Estimating Test Suite Quality

 Now, instead of a bowl of marbles, I have a

program with bugs

 I add 100 new bugs

 Assume they are exactly like real bugs in every way

 I make 100 copies of my program, each with one of my

100 new bugs

 I run my test suite on the programs with

seeded bugs ...

◦ ... and the tests reveal 20 of the bugs

◦ (the other 80 program copies do not fail)

Test Suite

69

Test suite is a container that has a set of tests which helps

testers in executing and reporting the test execution status. It

can take any of the three states namely Active, Inprogress

and completed.

70

Fault-Based Testing [TDM]

 The Basic concept of fault-based testing

is to select test cases that would

distinguish the program under test

from alternative programs that

contain hypothetical faults

 TDM- Test Data Management

Definition:

Fault-based testing is the process of demonstrating the

absence of pre-specified faults in a module under test (MUT).

Explanation:

The definition given here has a particular focus, scope, and

goal.

The focus is on faults rather than errors.

The scope is limited to pre-specified faults rather than all

possible faults.

The goal is to demonstrate the absence of faults, not merely

to look for faults (or errors).

Assumption in Fault-based Testing

 The effectiveness of fault-based testing

depends on the quality of the fault model and

on some basic assumptions about the relation of

the seeded faults to faults that might actually be

present.

 Competent programmer hypothesis.

 Coupling Effect.

 Fault based testing can guarantee fault detection

only if the competent programmer hypothesis

and coupling effect hypothesis hold. [TDM]

Mutation Analysis

 Mutation analysis is the most common form of

software fault-based testing.

 A fault model is used to produce hypothetical faulty

programs by creating variants of the program

under test.

 Variants are created by “seeding” faults,

 i.e making a small change to the program under test

following a pattern in the fault model.

 The patterns for changing program text are

called mutation operators, and each variant

program is called mutant.

 A mutant is a copy of a program with a mutation

 A mutation is a syntactic change (a seeded bug)

◦ Example: change (i < 0) to (i <= 0)

 The basic principle in mutation testing is that small

 changes are made in a module and then the

 original and mutant modules are compared.

 Run test suite on all the mutant programs

 A mutant is killed if it fails on at least one test
case

 If many mutants are killed, infer that the test
suite is also effective at finding real bugs

Mutant: A program with a planted fault

◦ Execute mutants on each member of test set Compare

results.

◦ Mutation Adequacy Score =D/N

 D=No. of dead mutants

N = No. of non equivalent mutants

 c = a – b; c = a + b;

 R1 R2

If (R1 = R2): mutant is alive otherwise it is killed.

79

80

Mutation Operators

 Syntactic change from legal program to legal
program

 So: Specific to each programming language. C++
mutations don’t work for Java, Java mutations don’t
work for Python

 Examples:

◦ crp: constant for constant replacement

 for instance: from (x < 5) to (x < 12)

 select from constants found somewhere in program text

◦ ror: relational operator replacement

 for instance: from (x <= 5) to (x < 5)

◦ vie: variable initialization elimination

 change int x =5; to int x;

Fault-Based Adequacy criteria

81

82

Mutant can remain live for two reasons

Estimating Population Sizes

 Counting fish Lake Winnemunchie is inhabited by two

kinds of fish, a native trout and an introduced species of

chub. The Fish and Wildlife Service wishes to estimate the

populations to evaluate their efforts to eradicate the chub

without harming the population of native trout.

 The population of chub can be estimated statistically as

follows. 1000 chub are netted, their dorsal fins are marked

by attaching a tag, then they are released back into the

lake. Over the next weeks, fishermen are asked to report

the number of tagged and untagged chub caught. If 50

tagged chub and 300 untagged chub are caught, we can

calculate



Counting residual faults
 A similar procedure can be used to estimate the

number of faults in a program: Seed a given

number S of faults in the program. Test the

program with some test suite and count the

number of revealed faults.

 Measure the number of seeded faults detected,

DS, and also the number of natural faults DN

detected. Estimate the total number of faults

remaining in the program, assuming the test suite

is as effective at finding natural faults as it is at

finding seeded faults, using the formula

 Ch 16, slide 84

Agenda

Unit-7:Fault-Based Testing, Test Execution 85

1. Introduction

2. Fault-Based Testing [TDM]

3. Assumption in Fault-based Testing

4. Fault Based Testing – Terminologies

5. Mutation Analysis

6. Fault-Based Adequacy criteria

7. Variations on Mutation

8. Fault-based testing criteria

9. Test Execution

10.Scaffolding

11.Test Oracles

12.Capture & Reply

13.Conclusions

Variations on Mutation

 Weak mutation

 Statistical mutation

Weak mutation

 Problem: There are lots of mutants.

Running each test case to completion on

every mutant is expensive

 Number of mutants grows with the square of

program size

 Approach:

◦ Execute meta-mutant (with many seeded

faults) together with original program

◦ Mark a seeded fault as “killed” as soon as a

difference in intermediate state is found

 Without waiting for program completion

 Restart with new mutant selection after each “kill”

Statistical Mutation
 Problem: There are lots of mutants.

Running each test case on every mutant

is expensive

 It’s just too expensive to create N2 mutants for a

program of N lines (even if we don’t run each test

case separately to completion)

 Approach: Just create a random sample

of mutants

◦ May be just as good for assessing a test suite

 Provided we don’t design test cases to kill

particular mutants (which would be like selectively

picking out black marbles anyway)

In real life ...

 Fault-based testing is a widely used in

semiconductor manufacturing

◦ With good fault models of typical manufacturing

faults, e.g., “stuck-at-one” for a transistor

◦ But fault-based testing for design errors is more

challenging (as in software)

 Mutation testing is not widely used in industry

◦ But plays a role in software testing research, to

compare effectiveness of testing techniques

 Some use of fault models to design test cases

is important and widely practiced

Mutation Analysis Procedure

1. Generate a large number of “mutant”
programs by replicating the original
program except for one small change (e.g.,
change the “+” in line 17 to a “-”, change the
“<“ in line 132 to a “<=“, etc.).

2. Compile and run each mutant program
against the test set.

(cont’d)

90

Mutation Analysis Procedure

(cont’d)
3. Compare the ratio of mutants “killed” (i.e.,

revealed) by the test set to the number of
“survivors.”

 The higher the “kill ratio” the better the test
set.

91

Error Seeding

 A similar approach, Error Seeding, has been
used to estimate the “number of errors”
remaining in a program.

 But such metrics are inherently problematic.
For example, how many “errors” are in the
following Quick Sort program?

 QSORT(X,N)

 Return(X)

 END

92

Error Seeding Procedure

1. Before testing, “seed” the program
with a number of “typical errors,”
keeping careful track of the changes
made.

2. After a period of testing, compare the
number of seeded and non-seeded
errors detected.

(cont’d)

93

Error Seeding Procedure (cont’d)

3. If N is the total number of errors seeded, n

is the number of seeded errors detected,
and x is the number of non-seeded errors

detected, the number of remaining (non-
seeded) errors in the program is about

 x(N/n – 1)

 What assumptions underlie this formula?

 Consider its derivation…

94

Derivation of Error Seeding Formula

 Let X be the total number of NON-SEEDED errors

in the program

 Assuming seeded and non-seeded errors are

equally easy/hard to detect, after some period
of testing, x:n  X:N.

 So, X  xN/n

 X – x  xN/n – x

  x(N/n – 1) as claimed.

95

96

Fault-based testing criteria

Error Seeding

◦ Estimate the number of faults that remain

◦ Measure quality of software testing

 r = # artificial faults detected

 f = # of not seeded errors detected

Estimated no. of inherent faults = (1/r)*f

◦ Applicable to any testing method

◦ Dependent on how faults are introduced

97

Program Mutation Testing

Mutant: A program with a planted fault

◦ Execute mutants on each member of test set

◦ Compare results

◦ Mutation Adequacy Score =D/N

 D=No. of dead mutants

N = No. of non equivalent mutants

Fault-based testing criteria

 c = a – b; c = a + b;

 R1 R2

If (R1 = R2): mutant is alive otherwise it is killed.

98

Variants of Program Mutation Testing

◦ Weak Mutation Testing

 Proposed to improve efficiency

 Mutate and test components

◦ Firm Mutation Testing

 Select portion of program , subset of parameters

 and mutate them.

 Compare original and changed versions

 Less expensive than strong mutation testing, more
efficient than weak mutation testing

 No basis to select area of program code, parameters

Fault-based testing criteria

99

 Criteria Inclusion Hierarchy

Firm Mutation Testing

Weak Mutation Testing

Strong Mutation Testing

Fault-based testing criteria

100

Perturbation Testing (Deviation of a system)

 Tests the robustness of a program

 Predicted fault tolerance = # of faults detected

 total # of executions

 A perturbation function is applied to change the data state

Example:

 int perturbation (int x)

 {

 int changedX;

 changedX = x + 50;

 return changedX;

 }

Fault-based testing criteria

101

main()

{int x;

 x = getVal();

 if (x > 0)

 printf(―X is positive‖);

 else

 printf(―X is negative‖);

}

main()

{int x;

 x = getVal();

 x = perturbation(x);

 if (x > 0)

 printf(―X is positive‖);

 else

 printf(―X is negative‖);

}

Fault-based testing criteria

Original program Fault injected program

Perturbation Testing

BMS Institute of Technology and Mgmt Department of ISE

BMS Institute of Technology and Mgmt Department of ISE Department of ISE BMS Institute of Technology and Mgmt

My Details

Dr. Manjunath T. N.

 Professor

Dept.of.ISE

BMSIT, Bengaluru
Email: manju.tn@bmsit.in

manju.tn@gmail.com

Mobile:+91-9900130748

3/5/2018

Department of ISE BMS Institute of Technology & Mgmt 1

Department of ISE BMS Institute of Technology & Mgmt

Agenda

2

1. Overview of Structural Testing

2. Statement Testing

3. Branch Testing and Condition Testing

4. Path Testing : DD Paths

5. Test Coverage Metrics

6. Basis Path testing

7. Data Flow Testing – Define- Use Testing

8. Slice Based

9. Test Execution

10.Scaffolding

11.Test Oracles

12.Capture & Reply

13.Conclusions

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Software Testing – White Box

1.Basis Path Testing - In Lab we have Exercise 10,11

&12

2.Data Flow Testing – In Lab we have Exercise 9

Some of the Basic Definitions:

1.Graph - G(V,E)

2.Types of Graph – Directed & Undirected,

 Cyclic & acyclic

3.Indegree & Out degree

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Software Testing – Basis Path

Program Graph

The techniques followed for path testing start with the

program graph

– Given a program written in an imperative programming

language, its program graph is a directed graph in which

nodes are either entire statements or fragments of a

statement, and edges represent flow of control

– If i and j are nodes in the program graph, there is an edge

from node i to node j if and only if the statement (fragment)

corresponding to node j can be executed immediately after

the statement (fragment) corresponding to node i.

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Software Testing – Basis Path

Statements fragment examples:

Begin / End

• convenient to have those as fragments

• Some argue that they are not always better to be

fragments (e.g. then begin), there is no problem in this

case when the graph is composed

The importance of a program graph is that program

executions correspond to paths from the source to the

sink nodes.

Test cases force the execution of some program path

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Software Testing – Basis Path

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Constructing a program graph from a given program based on above notations is

easy.

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont..

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Decision – To – Decision Paths (DD-Paths)

The best known form of structural testing is based on decision-to-decision

path.

A DD-paths is a sequence of statements that begins with the “outway‟ of a decision

statement and ends with the “inway‟ of the next decision statement.

– There are no internal branches in such a sequence

– Like a row of dominos

We will define paths in terms of nodes in a directed graph

Paths = chains

•Chain:

– a path in which the initial & terminal nodes are distinct

– every interior node has indegree = 1 and outdegree = 1

– A chain can consist of only one node & no edges

– Length of chain is the number of edges

•Every statement in a program is a member of one and only one DD-Path

•The objective is to scan the program to break it into a number of unique DD-

paths, and use each of those paths as a node to build a DD-Path Graph.

•DD-Paths enable very precise descriptions of test coverage

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

DD-Path Definition
Definition

A DD-Path is a sequence of nodes in a program graph such that

Case 1: it consists of a single node with in-degree = 0

– This is the source node (the initial DD-path)

Case 2: it consists of a single node with out-degree = 0

– This is the sink node (the final DD-path)

Case 3: it consists of a single node with in-degree >=2 OR out-degree >=2

– Assures that no node is contained in more than 1 DD-path

Case 4: it consists of a single node with in-degree = 1 AND outdegree = 1

– Needed for short branches

Case 5: it is a maximal chain of length >=1

– Normal case: single entry, single exit sequence of nodes

– Each node is 2-connected to every other node

» i.e. there is a path from node ni to nj (& not the reverse)

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Program Graph & DD-Path

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

DD-Path Graph

DD-Path graph for Triangle program

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Test Coverage Metrics

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Table: Structural test coverage metrics

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Metric Based Testing

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Basis Path Testing

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont..

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Basis Path Testing

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Data Flow Testing

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

DEFINE/USE TESTING

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Du-path - Definition

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Dc- path - Definition

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Commission Problem

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont..

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Test Coverage Metrics

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Commission
Problem

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

BMS Institute of Technology Mgmt Department of ISE Department of ISE BMS Institute of Technology & Mgmt

Cont…

Department of ISE BMS Institute of Technology & Mgmt

Test Execution

Unit-7:Fault-Based Testing, Test Execution 54

It is the process of executing test cases intended

to find defects.

Department of ISE BMS Institute of Technology & Mgmt

Scaffolding (A Temporary Structure)

55

Code developed to facilitate testing is called

scaffolding

Scaffolding has different parts

1.Test Harnesses

2.Drivers

3.Stubs

Scaffolding was made popular by the Ruby on Rails framework.

It has been adapted to other software frameworks, including OutSystems

Platform,Expressframework, Playframework, Django, MonoRail, Brail, S

ymfony, Laravel, CodeIgniter, Yii, CakePHP, Phalcon PHP, Model-

Glue, PRADO, Grails, Catalyst, Seam Framework, Spring Roo, ASP.NET

Dynamic Data and ASP.NET MVC framework‘s..etc

Department of ISE BMS Institute of Technology & Mgmt 56

Department of ISE BMS Institute of Technology & Mgmt

Test Oracles

57

Software that applies a pass/fail criterion to a

program execution is called a test oracle, often called

as oracle

Department of ISE BMS Institute of Technology & Mgmt

Cont…

58

Department of ISE BMS Institute of Technology & Mgmt 59

Department of ISE BMS Institute of Technology & Mgmt 60

Department of ISE BMS Institute of Technology & Mgmt 61

Department of ISE BMS Institute of Technology & Mgmt

Conclusion

Unit-7:Fault-Based Testing, Test Execution 62

 In a nut shell we have seen a brief Introduction to Structural

Testing, Test Execution, Scaffolding, Test Oracles, Capture &

Reply.

Software Testing

Module-4:PROCESS FRAMEWORK

Agenda

1. Validation

2. Verification

3. Relationship Between Validation & Verification

4. Dependability

5. Difference between validation & Verification

6. Degree of freedom

7. Basic Principles of Analysis & Testing

8. Improving the process

9. Conclusion

Process Framework

Process:

Process is a series of actions or steps taken in order to achieve a particular end.

Framework:

A framework is often a layered structure indicating what kind of programs can or should be

built and how they would interrelate.

Process framework deals with the different steps in a procedural manner , here we design test

framework in terms of process setup in the testing Team.

What Is Validation?

 Assessing the degree to which a software system actually

fulfills its requirements, in the sense of meeting the user’s real

needs, is called validation.

 Are we building the right product???

What Is Verification?

 Checking the consistency of an implementation with a specification.

 An overall design could play the role of “specification”.

 A more detailed design could play the role of “Implementation”.

 Are we building the product right????

Difference between software Verification and Validation

 Verification Validation

Are we building the system right? Are we building the right system?
Verification is the process of evaluating products of a
development phase to find out whether they meet the specified
requirements.

Validation is the process of evaluating software at the end of the
development process to determine whether software meets the
customer expectations and requirements.

The objective of Verification is to make sure that the product
being develop is as per the requirements and design
specifications.

The objective of Validation is to make sure that the product
actually meet up the user’s requirements, and check whether the
specifications were correct in the first place.

Following activities are involved in Verification: Reviews, Meetings
and Inspections.

Following activities are involved in Validation: Testing like black box
testing, white box testing, gray box testing etc.

Verification is carried out by SQA team to check whether
implementation software is as per specification document or not.

Validation is carried out by testing team.

Execution of code is not comes under Verification. Execution of code is comes under Validation.
Verification process explains whether the outputs are according
to inputs or not.

Validation process describes whether the software is accepted by
the user or not.

Verification is carried out before the Validation. Validation activity is carried out just after the Verification.

Following items are evaluated during Verification: Plans,
Requirement Specifications, Design Specifications, Code, Test
Cases etc,

Following item is evaluated during Validation: Actual product or
Software under test.

Cost of errors caught in Verification is less than errors found in
Validation.

Cost of errors caught in Validation is more than errors found in
Verification.

It is basically manually checking the of documents and files like
requirement specifications etc.

It is basically checking of developed program based on the
requirement specifications documents & files.

Difference between software Verification and Validation:
- See more at: http://www.softwaretestingclass.com/difference-between-verification-and-validation/#sthash.j8IsMMDU.dpuf

Conclusion on difference of Verification and Validation in software testing

 Both Verification and Validation are essential and balancing to each other.

 Different error filters are provided by each of them.

 Both are used to finds a defect in different way, Verification is used to identify the errors in

requirement specifications & validation is used to find the defects in the implemented Software

application.

Agenda

1. Validation

2. Verification

3. Relationship Between Validation & Verification

4. Dependability properties

5. Degree of freedom

6. Basic Principles of Analysis & Testing

7. Improving the process

8. Conclusion

The Relation Of Verification And Validation Activities With Respect To Artifacts Produced In

a Software Development Project

Relationship of verification & Validation

Actual Needs and

Constraints

Unit/

Component

Specs

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
ev

ie
w

Analysis /

Review

Analysis /

Review

User review of external behavior as it is

determined or becomes visible

Unit/

Components

Subsystem

Design/Specs
Subsystem

System

Specifications

System

Integration

Delivered

Package

 Verification Activities Checks Consistency B/W Designs And Specifications At Adjacent

Level.

 Validation Activities Attempts To Guage Whether The System Actually Satisfies Its

Intended Purpose.

 Validation Activities Refer Primarily To Overall System Specification And The Final

Code.

 Overall System Specification  Discrepancies B/W Actual Needs And System Specification.

Cont…

 Final Code Discrepancies B/W Actual Product and the final

product.

 Verification includes checks for self-consistency and well-

formedness.

 Ex: we cannot judge that a program is “correct” except in

Reference to a specification of what it should do, we can

certainly determine that some programs are “Incorrect”

because they are Ill-formed.

Cont…

Agenda

1. Validation

2. Verification

3. Relationship Between Validation & Verification

4. Dependability Properties

5. Degree of freedom

6. Basic Principles of Analysis & Testing

7. Improving the process

8. Conclusion

 Dependability Properties

1. Reliability

2. Correctness

3. Safety

4. Robustness

 Correctness  Absolute Consistency With Specification.

 Reliability  Correct behaviour In Expected Use.

 Robustness  Behaviour Under Exceptional Conditions.

 Safety  Avoidance of Particular Hazards.

Cont…

Agenda

1. Validation

2. Verification

3. Relationship Between Validation & Verification

4. Dependability Properties

5. Degree of freedom

6. Basic Principles of Analysis & Testing

7. Improving the process

8. Conclusion

Degrees Of Freedom-Definition

 Measure of how many values can vary in a statistical calculation

 There must exist a logical proof that a program satisfies all its

specifications

 Easy to obtain such proofs for simple programs though at high cost

 In general, One can’t produce a completely, logically correct proof

that a program will work in all systems & at all inputs

 For each verification technique checking a property “S”, at least one

pathological program exists for which a correct answer will never

be obtained in finite time.

 Verification will fail at least in one case.

 i.e. significant degree of inaccuracy must be accepted

Undecidability Theory

Need for Logical Proof

Consider the following cases:

 class A

{

 static int sum(int a, int b)

{

 return a+b;

}

}

 Its an example of a java class

 Representation of int is 32 binary digits

 2^32 x 2^32 = 2^64 = 10^21 different inputs on which A sum() has to be tested for correctness proof

 At 1 ns(10^-9 secs) per test case which will take about 30,000 years

Verification trade-off dimensions

Inaccuracies in verification technique

Pessimistic inaccuracy

 The failure to accept even correct

programs

 Not guaranteed to accept a program

even if it possess the specified

properties

Optimistic Inaccuracy

 Failure to reject incorrect programs

 Accepts programs that do not posses

specified properties

 Doesn’t detect all violations to the

specifications

Conservative analysis

 Verification technique that follows pessimistic approach

Drawbacks

• Produces large number of spurious error reports with a few accurate report

• Programmer will be unable to deal with a long list of mostly false alarms

 Since perfection is unobtainable, we must choose a technique that acts as an intermediate

between pessimistic & optimistic Inaccuracy

Introducing simple checks

Program

Int i, sum;

Int first=1;

For(i=0;i<10,++i)

{

If (first)

{

Sum=0; first=0;

}

Sum+=I;

}

 Rule: each variable should be initialized before its value is used in any expression

 Java solved this problem by making such code illegal

Agenda

1. Validation

2. Verification

3. Relationship Between Validation & Verification

4. Dependability Properties

5. Degree of freedom

6. Basic Principles of Analysis & Testing

7. Improving the process

8. Conclusion

Basic Principles of Analysis & Testing

1. Sensitivity

2. Redundancy

3. Restriction

4. Partition

5. Visibility

6. Feedback

As in any engineering discipline, techniques of analysis and testing software follow few

key principles.

 Different Principles are given below: [SRRPVF]

Sensitivity

1. Better to fail every time than sometimes

2. Sensitivity requires techniques of abstraction: system behavior cannot be related to

specific circumstances .

 When it uses a systematic strategy (e.g. using checklists or guidelines), code

inspection can help to find faults on regular basis.

Code Inspection

Inspection is a peer review process operated by trained individuals who look for defects.

A Fagan inspection is a structured inspection process which includes inspection planning,

overview meeting, preparation, inspection meeting, rework, follow-up

Code review is an inspection to discover bugs in a particular piece of code.

Code review is more informal, tool-based, and used regularly in practice than Fagan

Redundancy

From information theory: redundancy means dependency between transmissions.

Solution: create guards against transmission errors .

In software, redundancy means consistency between intended and actual system behavior.

Solution: create guards for artifacts consistency, making intention explicit. [RTM]

Ex:

Redundancy as dependency among parts of code by using a variable:

a variable is defined and then used elsewhere.

Type declaration is a technique that makes the intention explicitly.

Type declaration constraints the variable use in other part of the code.

Compilers check the correct use of a variable against its declared type.

Restriction

Substituting principle

1. Making the problem easier or

2. Reducing the set of classes under test

Substituting principle

In complex system, verifying properties can be infeasible. Often this happens when properties are related

to specific human judgements, but not only substituting a property with one that can be easier verified

or constraining the class of programs to verify

• Separate human judgment from objective verification.

• Example: Property: Each ”relevant” term in the dictionary must have a definition in the glossary.

Separate the term ”relevant” giving it a standard for example.

• Example: “Race condition”: interference between writing data in one process and reading or writing

related data in another process (an array accessed by different threads).

 Testing the integrity of shared data is difficult as it is checked at run time.

 Typical solution is to adhere to a protocol of serialization

Cont…

Compilers cannot be sure that k will be ever initialized,

depends on the condition

Make the problem easier: Java does not allow this code

Partition

Partition testing divides input into classes of

equivalent expected output.

• Then test criteria identify representatives in

classes to test a program

• A general rule to identify representatives does

not exist otherwise equivalence between programs

would be possible

Statement coverage checks whether all statements

are executed at least once.

Visibility

Setting goals and methods to achieve those goals

Making information accessible to the user

Feedback

Apply lessons learned from experience in process improvement and techniques

Iterative testing in eXtreme programming

Prototyping of the same

Agenda

1. Validation

2. Verification

3. Relationship Between Validation & Verification

4. Dependability Properties

5. Degree of freedom

6. Basic Principles of Analysis & Testing

7. Improving the process

8. Conclusion

Why Improvement in Process?

 Commonality of projects undertaken by an organization over time.

 Developers tend to make the same kind of errors, over and over due to which same

kinds of software faults are encountered.

 Quality process can be improved by gathering, analyzing and acting on data

regarding faults and failures.

How To Do It?

 Gather sufficiently complete and accurate data about faults and

failures.

 Integrate data collection with other development activities.

 E.g.:- Version and configuration control, project management and

bug tracking.

 Minimize extra effort.

 Aggregate raw data on faults and failures into categories and

prioritize them.

Analysis Step

 Tracing several instances of an observed fault and failure, back to the

human error from which it resulted.

 Involves the reasons as to why the faults were not detected and

removed earlier.- “Root Cause Analysis”

 Counter measures involve changing the

1. Programming methods or

2. Improvements to quality assurance activities or

3. Change in management practices.

Organizational Factors

• Poor allocation of responsibilities can lead to major problems in which
pursuit of individual goals conflicts with overall project success.

• Different teams for development and quality?

– separate development and quality teams is common in large organizations

– indistinguishable roles is postulated by some methodologies (extreme programming)

• Different roles for development and quality?

– Test designer is a specific role in many organizations

– Mobility of people and roles by rotating engineers over development and testing tasks
among different projects is a possible option

Agenda

1. Validation

2. Verification

3. Relationship Between Validation & Verification

4. Dependability Properties

5. Degree of freedom

6. Basic Principles of Analysis & Testing

7. Improving the process

8. Conclusion

 CONCLUSION

 In a nut shell, we have seen definition of Validation,

Verification, Relationship Between Validation &

Verification, Dependability, Difference between

validation & Verification, Degree of freedom,

Undecidability Theory, Need for logical Proof, Pessimistic

& Optimistic Inaccuracies, Basic Principles of Analysis &

Testing and Improving the process

39

Planning and Monitoring the Process,

Documenting Analysis and Test

Agenda

40

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

41

What are Planning and Monitoring?

• Planning:

– Scheduling activities (what steps? in what order?)

– Allocating resources (who will do it?)

– Devising unambiguous milestones for monitoring

• Monitoring:

Judging progress against the plan

– How are we doing? -- Red, Amber and Green

• A good plan must have visibility :

– Ability to monitor each step, and to make objective judgments of progress

Planning and Monitoring

Agenda

42

Planning and Monitoring

Quality and Process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

Quality and Process

43

Quality Process:

Set of activities and responsibilities

– focused primarily on ensuring adequate dependability

– concerned with project schedule or with product usability

• A framework for

– selecting and arranging activities

– considering interactions and trade-offs

• Follows the overall software process in which it is embedded

– Example: waterfall software process ––> “V model”: unit testing starts with

implementation and finishes before integration.

– Example: (Extreme Programming) XP and Agile methods ––> emphasis on unit

testing and rapid iteration for acceptance testing by customers

Clean Room Process

44

The cleanroom software engineering process is a software development process

intended to produce software with a certifiable level of reliability. (Software

Reliability is the probability of failure-free software operation for a specified period of time in a

specified environment.)

The cleanroom process was originally developed by Harlan Mills and several of his

colleagues including Alan Hevner at IBM. The focus of the cleanroom process is on

defect prevention, rather than defect removal.

The name "cleanroom" was chosen to invoke the cleanrooms used in the electronics

industry to prevent the introduction of defects during the fabrication of

semiconductors.

45

Cont…

46

Software Reliability Engineering Testing (SERT)

47

Cont…

48

Extreme Programming

49

Cont…

50

Overall Organization of a Quality Process

51

Key principle of quality planning

– The cost of detecting and repairing a fault increases as a function of time between

committing an error and detecting the resultant faults.

• therefore ...

– An efficient quality plan includes matched sets of intermediate validation and

verification activities that detect most faults within a short time of their Introduction.

• and ...

– V&V steps depend on the intermediate work products and on their anticipated

defects.

Verification Steps for Intermediate Artifacts

52

• Internal consistency checks

– Compliance with structuring rules that define “well-formed”

artifacts of that type

– A point of leverage: define syntactic and semantic rules thoroughly and precisely

enough that many common errors result in detectable violations.

• External consistency checks

– Consistency with related artifacts

– Often: conformance to a “prior” or “higher-level” specification

• Generation of correctness conjectures (Inferences)

– Correctness conjectures: lay the groundwork for external consistency checks of other

work products

– Often: motivate refinement of the current product

53

Agenda

54

Planning and Monitoring

Quality and Process

Test and Analysis Strategies and Plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

Test and Analysis Strategy

55

•Lessons of past experience

– An organizational asset built and refined over time

• Body of explicit knowledge

– More valuable than islands of individual competence

– Amenable (Agreeable) to improvement

– Reduces vulnerability to organizational change (e.g.,

loss of key individuals)

• Essential for

– Avoiding recurring errors

– Maintaining consistency of the process

– Increasing development efficiency

Considerations in Fitting a Strategy to an Organization

56

•Structure and size

– example

• Distinct quality groups in large organizations, overlapping of roles

in smaller organizations

• greater reliance on documents in large than small organizations

• Overall process

– example

• Cleanroom requires statistical testing and forbids unit testing

 – fits with tight, formal specs and emphasis on reliability

• XP prescribes “test first” and pair programming

 – fits with fluid specifications and rapid evolution

• Application domain

– example

• Safety critical domains may impose particular quality objectives and require documentation for

certification (e.g,RTCA/DO-178B standard requires MC/DC (Modified Coverage/Decision

Coverage)

Elements of a Strategy

57

• Common quality requirements that apply to all or most products

 – unambiguous definition and measures

• Set of documents normally produced during the quality process

 – contents and relationships

• Activities prescribed by the overall process

 – standard tools and practices

• Guidelines for project staffing and assignment of roles and responsibilities

Test and Analysis Plan

58

Answer the following questions:

1. What quality activities will be carried out?

2. What are the dependencies among the quality activities and between quality

and other development activities?

3. What resources are needed and how will they be allocated?

4. How will both the process and the product be monitored?

Main Elements of a Plan

59

1. Items and features to be verified

 – Scope and target of the plan

2. Activities and resources

 – Constraints imposed by resources on activities

3. Approaches to be followed

 – Methods and tools

4. Criteria for evaluating results

Quality Goals

60

•Expressed as properties satisfied by the product

 – must include metrics to be monitored during the project

 – example: before entering acceptance testing, the product must pass

comprehensive system testing with no critical or severe failures

 – not all details are available in the early stages of Development

• Initial plan

 – Based on incomplete information

 – Incrementally refined

Task Schedule

61

• Initially based on

 – quality strategy

 – past experience

• Breaks large tasks into subtasks

 – refine as process advances

• Includes dependencies

 – among quality activities

 – between quality and development activities

• Guidelines and objectives:

 – schedule activities for steady effort and continuous progress and evaluation

without delaying development activities

 – Schedule activities as early as possible

 – Increase process visibility (how do we know we’re on track?)

62
Unit-8: Planning and Monitoring the Process, Documenting Analysis and Test

Schedule Risk

63

critical path = chain of activities that must be
completed in sequence and that have maximum overall

duration

– Schedule critical tasks and tasks that depend on critical tasks

as early as possible to

• provide schedule slack

• prevent delay in starting critical tasks

• critical dependence = task on a critical path scheduled
immediately after some other task on the critical path

– May occur with tasks outside the quality plan

(part of the project plan)

– Reduce critical dependences by decomposing tasks on critical

path, factoring out subtasks that can be performed earlier

Reducing the Impact of Critical Paths

64

Cont…

65

Agenda

66

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk Planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

Risk Planning – Risks generic to process Management

67

Risks cannot be eliminated, but they can be

assessed, controlled, and monitored

• Generic management risk

– personnel

– technology

– schedule

• Quality risk

– development

– execution

– requirements

Personnel

68

Development

69

Test Execution

70

Evolution of the Plan

71

Agenda

72

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

Process Monitoring

73

Typical Distribution of Faults for system builds

through time

74

Agenda

75

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

Process Improvement

76

Monitoring and improvement within a

project or across multiple projects:

Orthogonal Defect Classification (ODC)

&Root Cause Analysis (RCA)

Orthogonal Defect Classification

77

ODC Fault Classification

78

ODC activities and Triggers

79

ODC Impact

80

ODC Fault Analysis

81

Cont…

82

Cont…

83

Cont…

84

85

86

87

88

89

90

91

92

93

Agenda

94

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

95

96

97

98

99

100

101

102

103

Agenda

104

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

Documenting Analysis and Test

105

106

107

108

109

110

111

Agenda

112

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

113

Agenda

114

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

115

116

Agenda

117

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

118

119

Agenda

120

Planning and Monitoring

Quality and process

Test and analysis strategies and plans

Risk planning

Monitoring the process

Improving the process

The quality team

Organizing documents

Test strategy document

Analysis and test plan

Test design specifications documents

Test and analysis reports

Conclusion

121

122

Conclusion

123

In a nut shell we have seen a Planning and Monitoring, Quality and process, Test and

analysis strategies and plans, Risk planning, Monitoring the process, Improving the process, The

quality team, Organizing documents, Test strategy document, Analysis and test plan, Test design

specifications documents and Test and analysis reports

Department of ISE BMS Institute of Technology & Mgmt 1

Department of ISE BMS Institute of Technology & Mgmt

Agenda

2

1. Integration Testing Strategies

2. Testing Components and assemblies

3. System Testing

4. Acceptance Testing

5. Regression Testing

6. Usability Testing

7. Regression Testing Selection Techniques

8. Test Case prioritization and Selective Execution

9. Levels of Testing and Integration Testing

10.Traditional view of testing levels

11.Alternative life cycle models

12.The SATM System

13.Separating Integration and System Testing

14.A Closer look at the SATM System

15.Decomposition Based

16.Call Graph Based

17.Path Based Integrations

Department of ISE BMS Institute of Technology & Mgmt

Integration Testing Strategies

3

 Bottom - up testing (test harness).

 Top - down testing (stubs).

 Modified top - down testing - test levels

independently.

 Big Bang.

 Sandwich testing.

Department of ISE BMS Institute of Technology & Mgmt 4

Top-Down Integration Testing

 Main program used as a test driver and stubs are
substitutes for components directly subordinate to it.

 Subordinate stubs are replaced one at a time with real
components (following the depth-first or breadth-first
approach).

 Tests are conducted as each component is integrated.

 On completion of each set of tests and other stub is
replaced with a real component.

 Regression testing may be used to ensure that new
errors not introduced.

Department of ISE BMS Institute of Technology & Mgmt 5

Bottom-Up Integration Testing

 Low level components are combined in clusters
that perform a specific software function.

 A driver (control program) is written to
coordinate test case input and output.

 The cluster is tested.

 Drivers are removed and clusters are combined
moving upward in the program structure.

Department of ISE BMS Institute of Technology & Mgmt 6

Bottom - Up

Top - Down

Big Bang

Sandwich

Integration

Early

Early

Early

Time to get

working

program

Late

Early

Late

Early

Drivers

Yes

No

Yes

Yes

Stub

No

Yes

Yes

Yes

Parallelism

Medium

Low

High

Medium

Test

specification

Easy

Hard

Easy

Medium

Product

control seq.

Easy

Hard

Easy

Hard

Department of ISE BMS Institute of Technology & Mgmt

Working Definition of Component

 Reusable unit of deployment and composition

◦ Deployed and integrated multiple times

◦ Integrated by different teams (usually)

 Component producer is distinct from component user

 Characterized by an interface or contract
 Describes access points, parameters, and all functional and

non-functional behavior and conditions for using the

component

 No other access (e.g., source code) is usually available

 Often larger grain than objects or packages

◦ Example: A complete database system may be a

component

Testing Components and assemblies

Department of ISE BMS Institute of Technology & Mgmt

Components — Related Concepts

 Framework
 Skeleton or micro-architecture of an application

 May be packaged and reused as a component, with “hooks”

or “slots” in the interface contract

 Design patterns
 Logical design fragments

 Frameworks often implement patterns, but patterns are not

frameworks. Frameworks are concrete, patterns are

abstract

 Component-based system
 A system composed primarily by assembling components,

often “Commercial off-the-shelf” (COTS) components

 Usually includes application-specific “glue code”

Department of ISE BMS Institute of Technology & Mgmt

Component Interface Contracts

 Application programming interface (API) is

distinct from implementation

◦ Example: DOM interface for XML is distinct from

many possible implementations, from different

sources

 Interface includes everything that must be

known to use the component

◦ More than just method signatures, exceptions, etc

◦ May include non-functional characteristics like

performance, capacity, security

◦ May include dependence on other components

Department of ISE BMS Institute of Technology & Mgmt

Challenges in Testing Components

 The component builder’s challenge:

◦ Impossible to know all the ways a component may

be used

◦ Difficult to recognize and specify all potentially

important properties and dependencies

 The component user’s challenge:

◦ No visibility “inside” the component

◦ Often difficult to judge suitability for a particular use

and context

Department of ISE BMS Institute of Technology & Mgmt

Testing a Component: Producer View

 First: Thorough unit and subsystem testing

◦ Includes thorough functional testing based on

application program interface (API)

◦ Rule of thumb: Reusable component requires at

least twice the effort in design, implementation,

and testing as a subsystem constructed for a single

use (often more)

 Second: Thorough acceptance testing

◦ Based on scenarios of expected use

◦ Includes stress and capacity testing

 Find and document the limits of applicability

Department of ISE BMS Institute of Technology & Mgmt

Testing a Component: User View

 Not primarily to find faults in the component

 Major question: Is the component suitable for

this application?

◦ Primary risk is not fitting the application context:

 Unanticipated dependence or interactions with environment

 Performance or capacity limits

 Missing functionality, misunderstood API

◦ Risk high when using component for first time

 Reducing risk: Trial integration early

◦ Often worthwhile to build driver to test model

scenarios, long before actual integration

Adapting and Testing a Component

 Applications often access components through

an adaptor, which can also be used by a test

driver

QuickTime™ and a
None decompressor

are needed to see this picture.

Component

Adaptor

Application

System Testing

14

 Recovery testing

◦ checks system’s ability to recover from failures

 Security testing

◦ verifies that system protection mechanism prevents
improper penetration or data alteration

 Stress testing

◦ program is checked to see how well it deals with
abnormal resource demands

 Performance testing

◦ tests the run-time performance of software

Department of ISE BMS Institute of Technology & Mgmt 15

Acceptance Testing

 Making sure the software works correctly for
intended user in his or her normal work
environment.

 Alpha test

◦ version of the complete software is tested by
customer under the supervision of the developer at
the developer’s site

 Beta test

◦ version of the complete software is tested by
customer at his or her own site without the developer
being present

Department of ISE BMS Institute of Technology & Mgmt 16

Acceptance Testing Approaches

 Benchmark test.

 Pilot testing.

 Parallel testing.

Department of ISE BMS Institute of Technology & Mgmt 17

Regression Testing

 Check for defects propagated to other

modules by changes made to existing program

◦ Representative sample of existing test cases is

used to exercise all software functions.

◦ Additional test cases focusing software functions

likely to be affected by the change.

◦ Tests cases that focus on the changed software

components.

Department of ISE BMS Institute of Technology & Mgmt

Usability Testing

18

Usability testing is a technique used in user-centered interaction

design to evaluate a product by testing it on users. This can be seen

as an irreplaceable usability practice, since it gives direct input on

how real users use the system. This is in contrast with usability

inspection methods where experts use different methods to evaluate

a user interface without involving users.

Usability testing focuses on measuring a human-made product's

capacity to meet its intended purpose. Examples of products that

commonly benefit from usability testing are food, consumer

products, web sites or web applications, computer interfaces,

documents, and devices.

Usability testing measures the usability, or ease of use, of a specific

object or set of objects, whereas general human–computer

interaction studies attempt to formulate universal principles.

https://en.wikipedia.org/wiki/Usability_inspection

Department of ISE BMS Institute of Technology & Mgmt

Regression Testing Selection Techniques

19

Regression testing is a necessary and expensive maintenance task

performed on modified programs to ensure that the changes have not

adversely effected the unchanged code of the program.

One strategy is to rerun the entire test suit on the changed program.

This is a heavy resource and time consuming process.

A solution to this is: Regression test selection techniques: selects a

subset of test cases, thus reducing the time and resources required.

Selection Techniques:

Department of ISE BMS Institute of Technology & Mgmt 20

Most of the selection techniques are based on the information about the

code of the program and the modified version. Some however are based

on the program specifications.

Following are some of the code based techniques, which are used for this

study

Selection technique algorithms used for study

Safe: selects all the test cases that cover/execute the changed

methods at least once.

Minimization: selects a minimum set of test cases that execute all the

changed methods.

Random25: selects randomly 25% of the total test cases. Random50:

selects randomly 50% of the total test cases.

Random75: selects randomly 75% of the total test cases.

Department of ISE BMS Institute of Technology & Mgmt 21

Regression testing activities such as test case selection and test case

prioritization are ordinarily based on the criteria which focused around

code coverage, code modifications and test execution costs. The

approach mainly based on the multiple criteria of code coverage which

performs efficient selection of test case. The method mainly aims to

maximize the coverage size by executing the test cases effectively

Test Case prioritization and Selective Execution

Department of ISE BMS Institute of Technology & Mgmt 22

The goal of regression testing is to ensure that changes to the system have

not introduced errors. One approach is to rerun all the test cases in the

existing test suite and check for new faults. But rerunning the entire test suite

is often too costly.

To make the execution of test cases more cost effective, two major

approaches are made use of. They are the Regression Test Selection (RTS)

and Regression Test Prioritization (RTP) techniques.

 Many RTS and RTP techniques consider a single criterion for optimization of

test cases. But, the use of a single criterion severely limits the ability of the

resulting regression test suite to locate faults. Harman et al., induce the need

of multiple criteria and provides a list of criteria with different weights.

The two criteria for selection are code coverage and sum coverage of the

program. Code coverage assumes that there exist test cases that effectively

cover the changed area of code of the software. Sum coverage is a new

approach that maximizes the minimum sum of coverage across all software

elements.

The selected test cases are prioritized using a greedy algorithm to maximize

the minimum sum of coverage across all software elements.

Department of ISE BMS Institute of Technology & Mgmt 23

Levels of Testing and Integration Testing

Traditional View of Testing Levels

The traditional model of software development is the Waterfall model,

which is drawn as a V in. In this view, information produced in one of the

development phases constitutes the basis for test case identification at

that level.

Nothing controversial here: we certainly would hope that system test

cases are somehow correlated with the requirements specification, and

that unit test cases are derived from the detailed design of the unit. Two

observations: there is a clear presumption of functional testing here, and

there is an implied “bottom-up” testing order.

Department of ISE BMS Institute of Technology & Mgmt

Alternative Life Cycle Models

24

Since the early 1980s, practitioners have devised alternatives in response

to shortcomings of the traditional waterfall model of software development

Common to all of these alternatives is the shift away from the functional

decomposition to an emphasis on composition. Decomposition is a perfect

fit both to the top-down progression of the waterfall model and to the

bottom-up testing order.

One of the major weaknesses of waterfall development cited by is the

over-reliance on this whole paradigm. Functional decomposition can only

be well done when the system is completely understood, and it promotes

analysis to the near exclusion of synthesis. The result is a very long

separation between requirements specification and a completed system,

and during this interval, there is no opportunity for feedback from the

customer. Composition, on the other hand, is closer the way people work:

start with something known and understood, then add to it gradually, and

maybe remove undesired portions.

There is a very nice analogy with positive and negative sculpture. In

negative sculpture, work proceeds by removing unwanted material, as in

the mathematician’s view of sculpting Michelangelo’s David: start with a

piece of marble, and simply chip away all non-David. Positive sculpture is

often done with a medium like wax.

Department of ISE BMS Institute of Technology & Mgmt 25

The central shape is approximated, and then wax is either added or

removed until the desired shape is attained. Think about the

consequences of a mistake: with negative sculpture, the whole work

must be thrown away, and restarted. With positive sculpture, the

erroneous part is simply removed and replaced. The centrality of

composition in the alternative models has a major implication for

integration testing.

Waterfall Spin-offs

There are three mainline derivatives of the waterfall model: incremental

development, evolutionary development, and the Spiral model [Boehm

88]. Each of these involves a series of increments or builds, Within a

build, the normal waterfall phases from detailed design through testing

occur, with one important difference: system testing is split into two

steps, regression and progression testing

Department of ISE BMS Institute of Technology & Mgmt

An Object-Oriented Life Cycle Model

26

When software is developed with an object orientation, none of our life cycle models

fit very well. The main reasons: the object orientation is highly compositional in

nature, and there is dense interaction among the construction phases of object-

oriented analysis, object-oriented design, and object-oriented programming. We

could show this with pronounced feedback loops among waterfall phases, but the

fountain model [Henderson-Sellers 90] is a much more appropriate metaphor. In the

fountain model, the foundation is the requirements analysis of real world systems

Department of ISE BMS Institute of Technology & Mgmt

Formulations of the SATM System

27

 The Simple Automatic Teller Machine (SATM) system. there are function

buttons B1, B2, and B3, a digit keypad with a cancel key, slots for printer

receipts and ATM cards, and doors for deposits and cash withdrawals. The

SATM system is described here in two ways: with a structured analysis

approach, and with an object-oriented approach. These descriptions are not

complete, but they contain detail sufficient to illustrate the testing techniques

under discussion.

SATM with Structured Analysis

The structured analysis approach to requirements specification is the most widely

used method in the world. It enjoys extensive CASE tool support as well as

commercial training, and is described in numerous texts. The technique is based

on three complementary models: function, data, and control. Here we use data

flow diagrams for the functional models, entity/relationship models for data, and

finite state machine models for the control aspect of the SATM system. The

functional and data models were drawn with the Deft CASE tool from Sybase Inc.

That tool identifies external devices (such as the terminal doors) with lower case

letters, and elements of the functional decomposition with numbers (such as 1.5

for the Validate Card function).

Department of ISE BMS Institute of Technology & Mgmt Unit-7:Fault-Based Testing, Test Execution 28

The open and filled arrowheads on flow arrows signify whether the flow

item is simple or compound. The portions of the SATM system shown

here pertain generally to the personal identification number (PIN)

verification portion of the system.

Department of ISE BMS Institute of Technology & Mgmt 29

The Deft CASE tool distinguishes between simple and compound

flows, where compound flows may be decomposed into other flows,

which may themselves be compound. The graphic appearance of this

choice is that simple flows have filled arrowheads, while compound

flows have open arrowheads. As an example, the compound flow

“screen” has the following decomposition

The SATM Terminal

Context Diagram of the SATM

System

Department of ISE BMS Institute of Technology & Mgmt 30

Level-1 Dataflow Diagram of

the SATM System

The Structured Analysis approach

models shown here are not complete

but they contain sufficient details to

illustrate the testing techniques.

The Structured analysis approach to

requirements specifications is still

widely used.

It Enjoys extensive CASE tool support.

The Techniques used are based on

three complementary models: function,

data and control.

Here we use dataflow diagrams for

functional model, the entity relationship

model for data and finite state machine

models for the control aspects of SATM

Department of ISE BMS Institute of Technology & Mgmt 31

The Different Screens are shown along with

E-R diagram of the major data structure in the SATM

-Customer

-Accounts

-Terminals

-Transactions.

E-R Model of the SATM

System

Department of ISE BMS Institute of Technology & Mgmt 32

The Upper level finite state

machine which divides the

system into states that

correspond to stages of

customer usage.

Other Choices are possible

for instance, we might

choose states to be screens

displayed.

Finite state machines can be

hierarchically decomposed

in much the same way as

dataflow diagrams can.

Upper Level SATM Finite

State Machine

Department of ISE BMS Institute of Technology & Mgmt 33

PIN Entry finite State

Machine

The Decomposition of the Await PIN

state. Here the state transitions are

caused either by events at the ATM

terminal or by data conditions.

When a transition occurs a

corresponding action may also occur.

We choose to use screen displays as

such actions, this choice will prove to

be very handy when we develop

system-level test cases.

The function, data and control

models are the basis for design

activities in the waterfall model

Department of ISE BMS Institute of Technology & Mgmt 34

A Decomposition tree for

the SATM System

The Pseudocode shown here is for SATM system and it is decomposed

into tree structure for different functionality

Department of ISE BMS Institute of Technology & Mgmt 35

SATM Units and Abbreviated Names

SATM functional decomposition tree

Department of ISE BMS Institute of Technology & Mgmt 36

• The decomposition tree is the basis of integration testing. It is important

to remember that such a decomposition is primarily a packaging

partition of the system.

• As software design moves into more detail, the added information. The

functional decomposition tree into a unit calling graph.

• The Unit calling graph is the directed graph in which nodes are program

units and edges runs from node A to node B.

• Drawing a call graphs do not scale up well.

• Both the drawings and the adjacency matrix provide insights to the

tester.

• Node with a higher degree will be important to integration testing and

paths from the main program(node-1) to the sink nodes can be used to

identify contents of builds for an incremental development.

Department of ISE BMS Institute of Technology & Mgmt 37

Adjacency Matrix for the SATM Call Graph

Department of ISE BMS Institute of Technology & Mgmt 38

SATM Call Graph

SATM Call graph is shown in the

graph. Some of the hierarchy is

obscured to reduce the confusion

in the drawing.

Department of ISE BMS Institute of Technology & Mgmt 39

Top-Down Integration

Department of ISE BMS Institute of Technology & Mgmt 40

At the uppermost level, we would have stubs for the four

components in the first level decomposition.

There would be four integration sessions, in each one component

would be actual code and other three would be stubs.

Top-down integration follows a breadth-first traversal of the functional

decomposition tree.

Department of ISE BMS Institute of Technology & Mgmt 41

Bottom Up Integration

Department of ISE BMS Institute of Technology & Mgmt 42

Bottom-up integration is a “mirror image” to the top-down order,

with the difference that stubs are replaced by driver modules that

emulate units at the next level up in the tree.

In bottom-up integration, we start with the leaves of the

decomposition tree (units like ControlDoor and DispenseCash),

and test them with specially coded drivers.

There is probably less throw-away code in drivers than there is in

stubs. Recall we had one stub for each child node in the

decomposition tree.

Most systems have a fairly high fan-out near at the leaves, so in

the bottom-up integration order, we won’t have as many drivers.

This is partially offset by the fact that the driver modules will be

more complicated

Department of ISE BMS Institute of Technology & Mgmt 43

Bottom-up Integration

Department of ISE BMS Institute of Technology & Mgmt 44

Pairwise Integration

The idea behind pair-wise integration is to eliminate the stub/driver

development effort. Rather than develop tubs and/or drivers, why

not use the actual code? At first, this sounds like big bang

integration, but we restrict a session to just a pair of units in the call

graph. The end result is that we have one integration test session

for each edge in the call graph

Department of ISE BMS Institute of Technology & Mgmt 45

Neighbourhoods Integration

We can let the mathematics carry us still further by borrowing the notion of a

“neighborhood” from topology. (This isn’t too much of a stretch - graph theory

is a branch of topology.) We (informally) define the neighborhood of a node in

a graph to be the set of nodes that are one edge away from the given node.

In a directed graph, this means all the immediate predecessor nodes and all

the immediate successor nodes (notice that these correspond to the set of

stubs and drivers of the node).

Department of ISE BMS Institute of Technology & Mgmt 46

The eleven neighborhoods for the SATM example (based on the

call graph in Figure 4.2) are given in Table 3.

Department of ISE BMS Institute of Technology & Mgmt 47

MM-Path across three units

Much of the progress in the development of mathematics comes from an

elegant pattern: have a clear idea of where you want to go, and then define

the concepts that take you there. We do this here for path based integration

testing, but first we need to motivate the definitions. When a unit executes,

some path of source statements is traversed. Suppose that there is a call to

another unit along such a path: at that point, control is passed from the

calling unit to the called unit, where some other path of source statements is

traversed. We cleverly ignored this situation in Part III, because this is a

better place to address the question. There are two possibilities: abandon

the singleentry, single exit precept and treat such calls as an exit followed by

an entry, or “suppress” the call statement because control eventually returns

to the calling unit anyway. The suppression choice works well for unit

testing, but it is antithetical to integration testing.

Department of ISE BMS Institute of Technology & Mgmt 48

The first guideline for MM-Paths: points of quiescence are “natural”

endpoints for an MM-Path. Our second guideline also serves to

distinguish integration from system testing.

Our second guideline: atomic system functions are an upper limit for MM-

Paths: we don’t want MMPaths to cross ASF boundaries. This means

that ASFs represent the seam between integration and system testing.

They are the largest item to be tested by integration testing, and the

smallest item for system testing. We can test an ASF at both levels.

Again, the digit entry ASF is a good example.

During system testing, the port input event is a physical key press that is

detected by KeySensor and sent to GetPIN as a string variable. (Notice

that KeySensor performs the physical to logical transition.) GetPIN

determines whether a digit key or the cancel key was pressed, and

responds accordingly.

(Notice that button presses are ignored.) The ASF terminates with either

screen 2 or 4 being displayed. Rather than require system keystrokes

and visible screen displays, we could use a driver to provide these, and

test the digit entry ASF via integration testing. We can see this using our

continuing example.

Department of ISE BMS Institute of Technology & Mgmt 49

MM-Path graph derived from

previous MM-Path

Department of ISE BMS Institute of Technology & Mgmt

Conclusion

50

In a nut shell we have seen a brief Integration Testing Strategies,

Testing Components and assemblies, System Testing, Acceptance

Testing, Regression Testing, Usability Testing, Regression Testing

Selection Techniques, Test Case prioritization and Selective Execution,

Levels of Testing and Integration Testing, Traditional view of testing

levels, Alternative life cycle models, The SATM System, Separating

Integration and System Testing, A Closer look at the SATM System,

Decomposition Based, Call Graph Based and Path Based Integrations.

